从气体混合物中选择性捕获二氧化碳的基于金属硼球烯传感器的深入理论探索

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Akbar Omidvar , Fateme Esmaili
{"title":"从气体混合物中选择性捕获二氧化碳的基于金属硼球烯传感器的深入理论探索","authors":"Akbar Omidvar ,&nbsp;Fateme Esmaili","doi":"10.1016/j.comptc.2025.115482","DOIUrl":null,"url":null,"abstract":"<div><div>Density functional theory (DFT) calculations are performed to investigate metalloborospherenes, La<sub>3</sub>B<sub>18</sub> and La<sub>3</sub>B<sub>18</sub><sup>−</sup> nanoclusters, as high-efficiency materials for gas sensing applications. The main objective of this study is to assess the ability of metalloborospherenes to detect and capture CO<sub>2</sub> from gas mixtures, including O<sub>2</sub>, N<sub>2</sub>, H<sub>2</sub>, CO, and NO. Our results reveal that CO<sub>2</sub> adsorption significantly alters the electronic structure of La<sub>3</sub>B<sub>18</sub><sup>−</sup>, whereas O<sub>2</sub>, N<sub>2</sub>, H<sub>2</sub>, NO, and CO adsorption exhibit negligible effects. CO<sub>2</sub> adsorption results in a significant enhancement of the band gap, increasing by approximately 39 % for La<sub>3</sub>B<sub>18</sub> and 85 % for La<sub>3</sub>B<sub>18</sub><sup>−</sup> nanoclusters. This adsorbate-induced modulation of the band gap directly influences the sensor's electrical conductivity. The resulting change in conductivity generates an electrical signal, thereby enabling the detection of CO<sub>2</sub> presence. Further analysis was conducted on the application of oriented external electric fields to enhance sensor recovery.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1254 ","pages":"Article 115482"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An in-depth theoretical exploration of metalloborospherene-based sensors for selective CO2 capture from gas mixtures\",\"authors\":\"Akbar Omidvar ,&nbsp;Fateme Esmaili\",\"doi\":\"10.1016/j.comptc.2025.115482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Density functional theory (DFT) calculations are performed to investigate metalloborospherenes, La<sub>3</sub>B<sub>18</sub> and La<sub>3</sub>B<sub>18</sub><sup>−</sup> nanoclusters, as high-efficiency materials for gas sensing applications. The main objective of this study is to assess the ability of metalloborospherenes to detect and capture CO<sub>2</sub> from gas mixtures, including O<sub>2</sub>, N<sub>2</sub>, H<sub>2</sub>, CO, and NO. Our results reveal that CO<sub>2</sub> adsorption significantly alters the electronic structure of La<sub>3</sub>B<sub>18</sub><sup>−</sup>, whereas O<sub>2</sub>, N<sub>2</sub>, H<sub>2</sub>, NO, and CO adsorption exhibit negligible effects. CO<sub>2</sub> adsorption results in a significant enhancement of the band gap, increasing by approximately 39 % for La<sub>3</sub>B<sub>18</sub> and 85 % for La<sub>3</sub>B<sub>18</sub><sup>−</sup> nanoclusters. This adsorbate-induced modulation of the band gap directly influences the sensor's electrical conductivity. The resulting change in conductivity generates an electrical signal, thereby enabling the detection of CO<sub>2</sub> presence. Further analysis was conducted on the application of oriented external electric fields to enhance sensor recovery.</div></div>\",\"PeriodicalId\":284,\"journal\":{\"name\":\"Computational and Theoretical Chemistry\",\"volume\":\"1254 \",\"pages\":\"Article 115482\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210271X25004189\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25004189","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

密度泛函理论(DFT)计算研究了金属硼球,La3B18和La3B18 -纳米团簇,作为气敏应用的高效材料。本研究的主要目的是评估金属球状体检测和捕获气体混合物中CO2的能力,包括O2、N2、H2、CO和NO。结果表明,CO2吸附显著改变了La3B18−的电子结构,而O2、N2、H2、NO和CO吸附的影响可以忽略不计。二氧化碳吸附导致带隙显著增强,La3B18纳米簇的带隙增加约39%,La3B18 -纳米簇的带隙增加约85%。这种吸附诱导的带隙调制直接影响传感器的导电性。由此产生的电导率变化产生电信号,从而能够检测CO2的存在。进一步分析了定向外电场在提高传感器回收率方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An in-depth theoretical exploration of metalloborospherene-based sensors for selective CO2 capture from gas mixtures

An in-depth theoretical exploration of metalloborospherene-based sensors for selective CO2 capture from gas mixtures
Density functional theory (DFT) calculations are performed to investigate metalloborospherenes, La3B18 and La3B18 nanoclusters, as high-efficiency materials for gas sensing applications. The main objective of this study is to assess the ability of metalloborospherenes to detect and capture CO2 from gas mixtures, including O2, N2, H2, CO, and NO. Our results reveal that CO2 adsorption significantly alters the electronic structure of La3B18, whereas O2, N2, H2, NO, and CO adsorption exhibit negligible effects. CO2 adsorption results in a significant enhancement of the band gap, increasing by approximately 39 % for La3B18 and 85 % for La3B18 nanoclusters. This adsorbate-induced modulation of the band gap directly influences the sensor's electrical conductivity. The resulting change in conductivity generates an electrical signal, thereby enabling the detection of CO2 presence. Further analysis was conducted on the application of oriented external electric fields to enhance sensor recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信