调整AZrO3钙钛矿的a位化学以实现二氧化碳捕获和甲烷化

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Andrea Braga, Andrea Felli, Andrea Strazzolini, Maila Danielis, Sara Colussi, Alessandro Trovarelli
{"title":"调整AZrO3钙钛矿的a位化学以实现二氧化碳捕获和甲烷化","authors":"Andrea Braga,&nbsp;Andrea Felli,&nbsp;Andrea Strazzolini,&nbsp;Maila Danielis,&nbsp;Sara Colussi,&nbsp;Alessandro Trovarelli","doi":"10.1016/j.apcata.2025.120570","DOIUrl":null,"url":null,"abstract":"<div><div>The Integrated Carbon Capture and Utilization (ICCU) strategy is gaining growing interest as a way to mitigate CO<sub>2</sub> emissions and transforming them into useful chemicals in a single reactor. The ICCU approach relies on Dual-Function Materials (DFMs), which combine sorption and catalytic conversion functionalities in one single unit. Here, we systematically explore the role of different alkaline and alkaline-earth cations in determining the microstructural, chemical and catalytic properties of Ru-loaded zirconate perovskites, with alkali elements in the A site, AZrO<sub>3</sub>, highlighting their impact on performance indicators such as CO<sub>2</sub> capture capacity, methanation rate and cyclic stability. The study provides evidence of zirconates-based DFMs being stable and efficient, particularly for Ru/SrZrO<sub>3</sub> (CO<sub>2</sub> capture: 170 μmol g<sup>−1</sup>, CH<sub>4</sub> production: 111 μmol g<sup>−1</sup>). Considering that such DFMs are characterized by surface area values one order of magnitude lower than conventional Al<sub>2</sub>O<sub>3</sub>-based materials, the Ru/AZrO<sub>3</sub> DFMs possess enhanced surface-specific activity compared to state-of-the-art DFMs, underscoring the importance of future microstructural optimization and providing guidance for the rational design of such materials.</div></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":"708 ","pages":"Article 120570"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning A-site chemistry in AZrO3 perovskites for integrated CO2 capture and methanation\",\"authors\":\"Andrea Braga,&nbsp;Andrea Felli,&nbsp;Andrea Strazzolini,&nbsp;Maila Danielis,&nbsp;Sara Colussi,&nbsp;Alessandro Trovarelli\",\"doi\":\"10.1016/j.apcata.2025.120570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Integrated Carbon Capture and Utilization (ICCU) strategy is gaining growing interest as a way to mitigate CO<sub>2</sub> emissions and transforming them into useful chemicals in a single reactor. The ICCU approach relies on Dual-Function Materials (DFMs), which combine sorption and catalytic conversion functionalities in one single unit. Here, we systematically explore the role of different alkaline and alkaline-earth cations in determining the microstructural, chemical and catalytic properties of Ru-loaded zirconate perovskites, with alkali elements in the A site, AZrO<sub>3</sub>, highlighting their impact on performance indicators such as CO<sub>2</sub> capture capacity, methanation rate and cyclic stability. The study provides evidence of zirconates-based DFMs being stable and efficient, particularly for Ru/SrZrO<sub>3</sub> (CO<sub>2</sub> capture: 170 μmol g<sup>−1</sup>, CH<sub>4</sub> production: 111 μmol g<sup>−1</sup>). Considering that such DFMs are characterized by surface area values one order of magnitude lower than conventional Al<sub>2</sub>O<sub>3</sub>-based materials, the Ru/AZrO<sub>3</sub> DFMs possess enhanced surface-specific activity compared to state-of-the-art DFMs, underscoring the importance of future microstructural optimization and providing guidance for the rational design of such materials.</div></div>\",\"PeriodicalId\":243,\"journal\":{\"name\":\"Applied Catalysis A: General\",\"volume\":\"708 \",\"pages\":\"Article 120570\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis A: General\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926860X25004727\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X25004727","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

综合碳捕获和利用(ICCU)战略作为一种减少二氧化碳排放并在单个反应器中将其转化为有用化学物质的方法,正受到越来越多的关注。ICCU方法依赖于双功能材料(DFMs),它将吸附和催化转化功能结合在一个单元中。在此,我们系统地探讨了不同碱性和碱土阳离子在确定负载ru的锆酸钙钛矿的微观结构、化学和催化性能中的作用,其中碱性元素在A位AZrO3中,突出了它们对CO2捕获能力、甲烷化速率和循环稳定性等性能指标的影响。该研究提供了锆酸盐基dfs稳定和高效的证据,特别是对于Ru/SrZrO3 (CO2捕获:170 μmol g−1,CH4生成:111 μmol g−1)。考虑到这种DFMs的表面积值比传统的al2o3基材料低一个数量级,Ru/AZrO3 DFMs与最先进的DFMs相比具有增强的表面比活性,强调了未来微结构优化的重要性,并为此类材料的合理设计提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning A-site chemistry in AZrO3 perovskites for integrated CO2 capture and methanation
The Integrated Carbon Capture and Utilization (ICCU) strategy is gaining growing interest as a way to mitigate CO2 emissions and transforming them into useful chemicals in a single reactor. The ICCU approach relies on Dual-Function Materials (DFMs), which combine sorption and catalytic conversion functionalities in one single unit. Here, we systematically explore the role of different alkaline and alkaline-earth cations in determining the microstructural, chemical and catalytic properties of Ru-loaded zirconate perovskites, with alkali elements in the A site, AZrO3, highlighting their impact on performance indicators such as CO2 capture capacity, methanation rate and cyclic stability. The study provides evidence of zirconates-based DFMs being stable and efficient, particularly for Ru/SrZrO3 (CO2 capture: 170 μmol g−1, CH4 production: 111 μmol g−1). Considering that such DFMs are characterized by surface area values one order of magnitude lower than conventional Al2O3-based materials, the Ru/AZrO3 DFMs possess enhanced surface-specific activity compared to state-of-the-art DFMs, underscoring the importance of future microstructural optimization and providing guidance for the rational design of such materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Catalysis A: General
Applied Catalysis A: General 化学-环境科学
CiteScore
9.00
自引率
5.50%
发文量
415
审稿时长
24 days
期刊介绍: Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications. Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信