一种新的基于数据分割的鞅差相关性及其在特征筛选中的应用

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Zhengyu Zhu , Jicai Liu , Riquan Zhang
{"title":"一种新的基于数据分割的鞅差相关性及其在特征筛选中的应用","authors":"Zhengyu Zhu ,&nbsp;Jicai Liu ,&nbsp;Riquan Zhang","doi":"10.1016/j.jmva.2025.105508","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a novel sample martingale difference correlation via data splitting to measure the departure of conditional mean independence between a response variable <span><math><mi>Y</mi></math></span> and a vector predictor <span><math><mi>X</mi></math></span>. The proposed correlation converges to zero and has an asymptotically symmetric sampling distribution around zero when <span><math><mi>Y</mi></math></span> and <span><math><mi>X</mi></math></span> are conditionally mean independent. In contrast, it converges to a positive value when <span><math><mi>Y</mi></math></span> and <span><math><mi>X</mi></math></span> are conditionally mean dependent. Leveraging these properties, we develop a new model-free feature screening method with false discovery rate (FDR) control for ultrahigh-dimensional data. We demonstrate that this screening method achieves FDR control and the sure screening property simultaneously. We also extend our approach to conditional quantile screening with FDR control. To further enhance the stability of the screening results, we implement multiple splitting techniques. We evaluate the finite sample performance of our proposed methods through simulations and real data analyses, and compare them with existing methods.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"211 ","pages":"Article 105508"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel martingale difference correlation via data splitting with applications in feature screening\",\"authors\":\"Zhengyu Zhu ,&nbsp;Jicai Liu ,&nbsp;Riquan Zhang\",\"doi\":\"10.1016/j.jmva.2025.105508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce a novel sample martingale difference correlation via data splitting to measure the departure of conditional mean independence between a response variable <span><math><mi>Y</mi></math></span> and a vector predictor <span><math><mi>X</mi></math></span>. The proposed correlation converges to zero and has an asymptotically symmetric sampling distribution around zero when <span><math><mi>Y</mi></math></span> and <span><math><mi>X</mi></math></span> are conditionally mean independent. In contrast, it converges to a positive value when <span><math><mi>Y</mi></math></span> and <span><math><mi>X</mi></math></span> are conditionally mean dependent. Leveraging these properties, we develop a new model-free feature screening method with false discovery rate (FDR) control for ultrahigh-dimensional data. We demonstrate that this screening method achieves FDR control and the sure screening property simultaneously. We also extend our approach to conditional quantile screening with FDR control. To further enhance the stability of the screening results, we implement multiple splitting techniques. We evaluate the finite sample performance of our proposed methods through simulations and real data analyses, and compare them with existing methods.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"211 \",\"pages\":\"Article 105508\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X25001034\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25001034","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过数据分割引入了一种新的样本鞅差相关来度量响应变量Y和向量预测变量X之间的条件均值独立偏离,当Y和X是条件均值独立时,所提出的相关收敛于零,并且在零附近具有渐近对称的抽样分布。相反,当Y和X是条件平均相关时,它收敛到一个正值。利用这些特性,我们开发了一种新的无模型特征筛选方法,该方法具有超高维数据的错误发现率(FDR)控制。结果表明,该筛分方法既实现了FDR控制,又保证了筛分性能。我们还将我们的方法扩展到FDR控制的条件分位数筛选。为了进一步提高筛选结果的稳定性,我们采用了多重拆分技术。我们通过模拟和实际数据分析来评估我们提出的方法的有限样本性能,并将它们与现有方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel martingale difference correlation via data splitting with applications in feature screening
In this paper, we introduce a novel sample martingale difference correlation via data splitting to measure the departure of conditional mean independence between a response variable Y and a vector predictor X. The proposed correlation converges to zero and has an asymptotically symmetric sampling distribution around zero when Y and X are conditionally mean independent. In contrast, it converges to a positive value when Y and X are conditionally mean dependent. Leveraging these properties, we develop a new model-free feature screening method with false discovery rate (FDR) control for ultrahigh-dimensional data. We demonstrate that this screening method achieves FDR control and the sure screening property simultaneously. We also extend our approach to conditional quantile screening with FDR control. To further enhance the stability of the screening results, we implement multiple splitting techniques. We evaluate the finite sample performance of our proposed methods through simulations and real data analyses, and compare them with existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信