不完全观测值下的非参数函数数据回归

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Majid Mojirsheibani
{"title":"不完全观测值下的非参数函数数据回归","authors":"Majid Mojirsheibani","doi":"10.1016/j.jmva.2025.105497","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we consider the problem of nonparametric estimation of a regression function <span><math><mrow><mi>m</mi><mrow><mo>(</mo><mi>χ</mi><mo>)</mo></mrow><mo>=</mo><mi>E</mi><mrow><mo>(</mo><mi>Y</mi><mo>|</mo><mspace></mspace><mi>χ</mi><mo>=</mo><mi>χ</mi><mo>)</mo></mrow></mrow></math></span> with the functional covariate <span><math><mrow><mi>χ</mi></mrow></math></span> when the response <span><math><mi>Y</mi></math></span> may be missing according to a missing-not-at-random (MNAR) setup, i.e., when the underlying missing probability mechanism can depend on both <span><math><mrow><mi>χ</mi></mrow></math></span> and <span><math><mi>Y</mi></math></span>. Our proposed estimator is based on a particular representation of the regression function <span><math><mrow><mi>m</mi><mrow><mo>(</mo><mi>χ</mi><mo>)</mo></mrow></mrow></math></span> in terms of four associated conditional expectations that can be estimated nonparametrically. To assess the theoretical performance of our estimators, we study their convergence properties in general <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norms where we also look into their rates of convergence. Our numerical results show that the proposed estimators have good finite-sample performance. We also explore the applications of our results to the problem of statistical classification with missing labels and establish a number of convergence results for new kernel-type classification rules.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"211 ","pages":"Article 105497"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On nonparametric functional data regression with incomplete observations\",\"authors\":\"Majid Mojirsheibani\",\"doi\":\"10.1016/j.jmva.2025.105497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work we consider the problem of nonparametric estimation of a regression function <span><math><mrow><mi>m</mi><mrow><mo>(</mo><mi>χ</mi><mo>)</mo></mrow><mo>=</mo><mi>E</mi><mrow><mo>(</mo><mi>Y</mi><mo>|</mo><mspace></mspace><mi>χ</mi><mo>=</mo><mi>χ</mi><mo>)</mo></mrow></mrow></math></span> with the functional covariate <span><math><mrow><mi>χ</mi></mrow></math></span> when the response <span><math><mi>Y</mi></math></span> may be missing according to a missing-not-at-random (MNAR) setup, i.e., when the underlying missing probability mechanism can depend on both <span><math><mrow><mi>χ</mi></mrow></math></span> and <span><math><mi>Y</mi></math></span>. Our proposed estimator is based on a particular representation of the regression function <span><math><mrow><mi>m</mi><mrow><mo>(</mo><mi>χ</mi><mo>)</mo></mrow></mrow></math></span> in terms of four associated conditional expectations that can be estimated nonparametrically. To assess the theoretical performance of our estimators, we study their convergence properties in general <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norms where we also look into their rates of convergence. Our numerical results show that the proposed estimators have good finite-sample performance. We also explore the applications of our results to the problem of statistical classification with missing labels and establish a number of convergence results for new kernel-type classification rules.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"211 \",\"pages\":\"Article 105497\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X25000922\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000922","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑了回归函数m(χ)=E(Y|χ=χ)与函数协变量χ的非参数估计问题,当响应Y根据缺失非随机(MNAR)设置可能缺失时,即,当潜在的缺失概率机制可以依赖于χ和Y时。我们提出的估计器基于回归函数m(χ)的特定表示,其中包含四个可以非参数估计的相关条件期望。为了评估我们的估计器的理论性能,我们研究了它们在一般Lp范数下的收敛性质,并研究了它们的收敛速率。数值结果表明,所提估计器具有良好的有限样本性能。我们还探索了我们的结果在缺少标签的统计分类问题上的应用,并建立了一些新的核类型分类规则的收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On nonparametric functional data regression with incomplete observations
In this work we consider the problem of nonparametric estimation of a regression function m(χ)=E(Y|χ=χ) with the functional covariate χ when the response Y may be missing according to a missing-not-at-random (MNAR) setup, i.e., when the underlying missing probability mechanism can depend on both χ and Y. Our proposed estimator is based on a particular representation of the regression function m(χ) in terms of four associated conditional expectations that can be estimated nonparametrically. To assess the theoretical performance of our estimators, we study their convergence properties in general Lp norms where we also look into their rates of convergence. Our numerical results show that the proposed estimators have good finite-sample performance. We also explore the applications of our results to the problem of statistical classification with missing labels and establish a number of convergence results for new kernel-type classification rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信