Alexandre Silva, Carolina Antunes, Rolando Miragaia, Rogério Luís Costa, Fernando Silva, José Ribeiro
{"title":"人工智能在石材制造业中的应用:系统的文献综述","authors":"Alexandre Silva, Carolina Antunes, Rolando Miragaia, Rogério Luís Costa, Fernando Silva, José Ribeiro","doi":"10.1016/j.compeleceng.2025.110702","DOIUrl":null,"url":null,"abstract":"<div><div>Natural stone has long been used in construction, as its properties provide functional and visual value, and the natural stone market currently holds significant importance in the global economy. It is important to consider integrating new technologies in the production chain to aid the industry in moving forward, increasing profit margins and reducing wasted material. This article reviews recent trends in using Artificial Intelligence and Machine Learning techniques in the industry between 2017 and 2024, following a methodology for Systematic Literature Reviews in computer science. It was found that extensive research has been conducted on the subject of tile classification, with solid solutions proposed, achieving results that can be considered robust enough for industrial application. Other subjects comprise tasks regarding stone cutting and defect detection, as well as variable prediction, and quarry activity monitoring. Some authors propose solutions to integrate new technologies into the complete production chain. While more research needs to be done on specific subjects, this review provides a solid first step to future research.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"128 ","pages":"Article 110702"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence applied to the stone manufacturing industry: A systematic literature review\",\"authors\":\"Alexandre Silva, Carolina Antunes, Rolando Miragaia, Rogério Luís Costa, Fernando Silva, José Ribeiro\",\"doi\":\"10.1016/j.compeleceng.2025.110702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Natural stone has long been used in construction, as its properties provide functional and visual value, and the natural stone market currently holds significant importance in the global economy. It is important to consider integrating new technologies in the production chain to aid the industry in moving forward, increasing profit margins and reducing wasted material. This article reviews recent trends in using Artificial Intelligence and Machine Learning techniques in the industry between 2017 and 2024, following a methodology for Systematic Literature Reviews in computer science. It was found that extensive research has been conducted on the subject of tile classification, with solid solutions proposed, achieving results that can be considered robust enough for industrial application. Other subjects comprise tasks regarding stone cutting and defect detection, as well as variable prediction, and quarry activity monitoring. Some authors propose solutions to integrate new technologies into the complete production chain. While more research needs to be done on specific subjects, this review provides a solid first step to future research.</div></div>\",\"PeriodicalId\":50630,\"journal\":{\"name\":\"Computers & Electrical Engineering\",\"volume\":\"128 \",\"pages\":\"Article 110702\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Electrical Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045790625006457\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625006457","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Artificial intelligence applied to the stone manufacturing industry: A systematic literature review
Natural stone has long been used in construction, as its properties provide functional and visual value, and the natural stone market currently holds significant importance in the global economy. It is important to consider integrating new technologies in the production chain to aid the industry in moving forward, increasing profit margins and reducing wasted material. This article reviews recent trends in using Artificial Intelligence and Machine Learning techniques in the industry between 2017 and 2024, following a methodology for Systematic Literature Reviews in computer science. It was found that extensive research has been conducted on the subject of tile classification, with solid solutions proposed, achieving results that can be considered robust enough for industrial application. Other subjects comprise tasks regarding stone cutting and defect detection, as well as variable prediction, and quarry activity monitoring. Some authors propose solutions to integrate new technologies into the complete production chain. While more research needs to be done on specific subjects, this review provides a solid first step to future research.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.