Gabriel A. Peña, Antonio Jiménez-Martín, Alfonso Mateos
{"title":"增强的二元粒子群优化,通过客运空中交通管理减轻大流行的传播","authors":"Gabriel A. Peña, Antonio Jiménez-Martín, Alfonso Mateos","doi":"10.1016/j.knosys.2025.114430","DOIUrl":null,"url":null,"abstract":"<div><div>This study tackles a complex binary multi-objective optimization problem focused on minimizing the risk of pandemic importation through strategic passenger air traffic management. The approach involves determining whether international connections to destination airports within a specified country should be activated or deactivated over a defined time frame, considering epidemiological, economic, and socio-political impacts. We introduce a preliminary decision support system designed to assist decision-makers in the parametrization of the problem and quantify their preferences, thereby facilitating the derivation of a compromise solution via a binary particle swarm optimization (BPSO) metaheuristic. The standard BPSO is prone to particles getting trapped in local optima instead of searching for new solution and does not handle infeasible solutions properly. To overcome these inherent limitations, we propose an enhanced version of the BPSO metaheuristic. This enhanced algorithm incorporates novel mechanisms to promote solution space exploration and a robust strategy for managing infeasible solutions. A rigorous comparative analysis is conducted to evaluate the performance of the enhanced BPSO against both the original BPSO and several established state-of-the-art metaheuristics utilizing three benchmark datasets of a constrained problem. Finally, the effectiveness of the proposed enhanced metaheuristic is demonstrated in the context of the pandemic importation risk reduction problem, where it outperforms the original BPSO.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"329 ","pages":"Article 114430"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced binary particle swarm optimization for mitigating pandemic spread through passenger air traffic management\",\"authors\":\"Gabriel A. Peña, Antonio Jiménez-Martín, Alfonso Mateos\",\"doi\":\"10.1016/j.knosys.2025.114430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study tackles a complex binary multi-objective optimization problem focused on minimizing the risk of pandemic importation through strategic passenger air traffic management. The approach involves determining whether international connections to destination airports within a specified country should be activated or deactivated over a defined time frame, considering epidemiological, economic, and socio-political impacts. We introduce a preliminary decision support system designed to assist decision-makers in the parametrization of the problem and quantify their preferences, thereby facilitating the derivation of a compromise solution via a binary particle swarm optimization (BPSO) metaheuristic. The standard BPSO is prone to particles getting trapped in local optima instead of searching for new solution and does not handle infeasible solutions properly. To overcome these inherent limitations, we propose an enhanced version of the BPSO metaheuristic. This enhanced algorithm incorporates novel mechanisms to promote solution space exploration and a robust strategy for managing infeasible solutions. A rigorous comparative analysis is conducted to evaluate the performance of the enhanced BPSO against both the original BPSO and several established state-of-the-art metaheuristics utilizing three benchmark datasets of a constrained problem. Finally, the effectiveness of the proposed enhanced metaheuristic is demonstrated in the context of the pandemic importation risk reduction problem, where it outperforms the original BPSO.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"329 \",\"pages\":\"Article 114430\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125014698\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125014698","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Enhanced binary particle swarm optimization for mitigating pandemic spread through passenger air traffic management
This study tackles a complex binary multi-objective optimization problem focused on minimizing the risk of pandemic importation through strategic passenger air traffic management. The approach involves determining whether international connections to destination airports within a specified country should be activated or deactivated over a defined time frame, considering epidemiological, economic, and socio-political impacts. We introduce a preliminary decision support system designed to assist decision-makers in the parametrization of the problem and quantify their preferences, thereby facilitating the derivation of a compromise solution via a binary particle swarm optimization (BPSO) metaheuristic. The standard BPSO is prone to particles getting trapped in local optima instead of searching for new solution and does not handle infeasible solutions properly. To overcome these inherent limitations, we propose an enhanced version of the BPSO metaheuristic. This enhanced algorithm incorporates novel mechanisms to promote solution space exploration and a robust strategy for managing infeasible solutions. A rigorous comparative analysis is conducted to evaluate the performance of the enhanced BPSO against both the original BPSO and several established state-of-the-art metaheuristics utilizing three benchmark datasets of a constrained problem. Finally, the effectiveness of the proposed enhanced metaheuristic is demonstrated in the context of the pandemic importation risk reduction problem, where it outperforms the original BPSO.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.