基于变换的融合时空注意力交通预测方法

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wenfeng Zhou , Guojiang Shen , Zhenzhen Zhao , Zhaolin Deng , Tao Tang , Xiangjie Kong , Amr Tolba , Osama Alfarraj
{"title":"基于变换的融合时空注意力交通预测方法","authors":"Wenfeng Zhou ,&nbsp;Guojiang Shen ,&nbsp;Zhenzhen Zhao ,&nbsp;Zhaolin Deng ,&nbsp;Tao Tang ,&nbsp;Xiangjie Kong ,&nbsp;Amr Tolba ,&nbsp;Osama Alfarraj","doi":"10.1016/j.knosys.2025.114466","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate traffic data prediction is a crucial technology for data-driven intelligent transportation systems. This has an important impact on optimizing urban traffic management, travel efficiency, traffic experience, etc. Traffic flow prediction tasks primarily focus on mining dynamic spatiotemporal dependencies. Most existing Transformer-based methods and GNN-based methods have limitations in mining local-global spatiotemporal dependencies. To address this issue, we propose a novel traffic data prediction model called LGSTformer that can perceive local-global spatiotemporal dependencies. First, we construct an embedding layer that provides multiple types of embedding representations for the model by projecting spatiotemporal data and temporal and spatial information into different embeddings. Next, we design two modules to capture local-global temporal and spatial dependencies based on the naive spatiotemporal self-attention mechanism: the local-global temporal module and the local-global spatial module. The former incorporates multi-scale temporal convolutions to capture short-term temporal dependencies, and the latter incorporates dynamic-static graph convolutions to capture local spatial dependencies. Finally, to achieve effective fusion of local-global dependency information, a dual-path adaptive gated fusion layer based on a gating mechanism is introduced to attain adaptive fusion of information at different levels. Experimental results on four public real-world traffic datasets show that LGSTformer outperforms existing methods and has potential as an advanced solution for traffic flow prediction.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"329 ","pages":"Article 114466"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transformer-based approach for traffic prediction with fusion spatiotemporal attention\",\"authors\":\"Wenfeng Zhou ,&nbsp;Guojiang Shen ,&nbsp;Zhenzhen Zhao ,&nbsp;Zhaolin Deng ,&nbsp;Tao Tang ,&nbsp;Xiangjie Kong ,&nbsp;Amr Tolba ,&nbsp;Osama Alfarraj\",\"doi\":\"10.1016/j.knosys.2025.114466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate traffic data prediction is a crucial technology for data-driven intelligent transportation systems. This has an important impact on optimizing urban traffic management, travel efficiency, traffic experience, etc. Traffic flow prediction tasks primarily focus on mining dynamic spatiotemporal dependencies. Most existing Transformer-based methods and GNN-based methods have limitations in mining local-global spatiotemporal dependencies. To address this issue, we propose a novel traffic data prediction model called LGSTformer that can perceive local-global spatiotemporal dependencies. First, we construct an embedding layer that provides multiple types of embedding representations for the model by projecting spatiotemporal data and temporal and spatial information into different embeddings. Next, we design two modules to capture local-global temporal and spatial dependencies based on the naive spatiotemporal self-attention mechanism: the local-global temporal module and the local-global spatial module. The former incorporates multi-scale temporal convolutions to capture short-term temporal dependencies, and the latter incorporates dynamic-static graph convolutions to capture local spatial dependencies. Finally, to achieve effective fusion of local-global dependency information, a dual-path adaptive gated fusion layer based on a gating mechanism is introduced to attain adaptive fusion of information at different levels. Experimental results on four public real-world traffic datasets show that LGSTformer outperforms existing methods and has potential as an advanced solution for traffic flow prediction.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"329 \",\"pages\":\"Article 114466\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125015059\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125015059","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

准确的交通数据预测是数据驱动型智能交通系统的关键技术。这对优化城市交通管理、提高出行效率、提升出行体验等具有重要影响。交通流预测任务主要集中于挖掘动态时空依赖关系。大多数现有的基于变换的方法和基于gnn的方法在挖掘局部-全局时空依赖关系方面存在局限性。为了解决这个问题,我们提出了一种新的交通数据预测模型,称为LGSTformer,它可以感知局部-全局时空依赖性。首先,我们构建了一个嵌入层,通过将时空数据和时空信息投射到不同的嵌入中,为模型提供多种类型的嵌入表示。接下来,我们设计了基于朴素时空自注意机制的两个模块:局部全局时间模块和局部全局空间模块来捕获局部全局时间和空间依赖关系。前者采用多尺度时间卷积捕获短期时间依赖关系,后者采用动态-静态图卷积捕获局部空间依赖关系。最后,为了实现局部-全局依赖信息的有效融合,引入了基于门控机制的双路径自适应门控融合层,实现了不同层次信息的自适应融合。在4个公共现实交通数据集上的实验结果表明,LGSTformer算法优于现有方法,具有作为交通流预测高级解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A transformer-based approach for traffic prediction with fusion spatiotemporal attention
Accurate traffic data prediction is a crucial technology for data-driven intelligent transportation systems. This has an important impact on optimizing urban traffic management, travel efficiency, traffic experience, etc. Traffic flow prediction tasks primarily focus on mining dynamic spatiotemporal dependencies. Most existing Transformer-based methods and GNN-based methods have limitations in mining local-global spatiotemporal dependencies. To address this issue, we propose a novel traffic data prediction model called LGSTformer that can perceive local-global spatiotemporal dependencies. First, we construct an embedding layer that provides multiple types of embedding representations for the model by projecting spatiotemporal data and temporal and spatial information into different embeddings. Next, we design two modules to capture local-global temporal and spatial dependencies based on the naive spatiotemporal self-attention mechanism: the local-global temporal module and the local-global spatial module. The former incorporates multi-scale temporal convolutions to capture short-term temporal dependencies, and the latter incorporates dynamic-static graph convolutions to capture local spatial dependencies. Finally, to achieve effective fusion of local-global dependency information, a dual-path adaptive gated fusion layer based on a gating mechanism is introduced to attain adaptive fusion of information at different levels. Experimental results on four public real-world traffic datasets show that LGSTformer outperforms existing methods and has potential as an advanced solution for traffic flow prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信