XSiH3 (X = Bi, Ga)钙钛矿氢化物的储氢势和物理性质:第一性原理研究

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Aya Chelh, Boutaina Akenoun, Smahane Dahbi, Ihssan Chakkour, Hasnae Ouichou, Najim Tahiri, Hamid Ez-Zahraouy
{"title":"XSiH3 (X = Bi, Ga)钙钛矿氢化物的储氢势和物理性质:第一性原理研究","authors":"Aya Chelh,&nbsp;Boutaina Akenoun,&nbsp;Smahane Dahbi,&nbsp;Ihssan Chakkour,&nbsp;Hasnae Ouichou,&nbsp;Najim Tahiri,&nbsp;Hamid Ez-Zahraouy","doi":"10.1016/j.cocom.2025.e01133","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we present a comprehensive first-principles investigation of the structural, electronic, optical, thermodynamic, and hydrogen storage properties of cubic perovskite-type hydrides XSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (X = Bi, Ga) within density functional theory using the full-potential linearized augmented plane wave method, as implemented in WIEN2k. Our structural optimization confirms that both BiSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and GaSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> crystallize in a stable cubic structure (space group Pm<span><math><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover></math></span>m). Electronic band structure and density of states calculations confirm the metallic nature of both compounds, with the intersection of the valence and conduction bands at the Fermi level. Optical calculations reveal strong absorption in the visible and ultraviolet spectral regions, with GaSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> exhibiting strong plasmonic behavior. Thermodynamic calculations using the quasi-harmonic Debye model confirm their thermal robustness under varying pressures, with GaSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> showing higher entropy and Debye temperature values. Furthermore, hydrogen storage calculations confirm that GaSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> has a higher gravimetric capacity (3.00 wt%) compared to BiSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (1.26 wt%) and releases hydrogen at a moderately elevated temperature, suggesting its greater suitability for hydrogen storage. However, decomposition energy calculations indicate that partial structural degradation may occur during hydrogen desorption, potentially limiting the reversibility of hydrogen uptake. Additionally, ab initio molecular dynamics simulations demonstrate that both BiSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and GaSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> maintain their structural integrity with only minor thermal fluctuations in total energy, further confirming their dynamical stability. This theoretical analysis provides predictive insight into the multifunctionality of XSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> hydrides, which may guide future experimental efforts in energy and optoelectronic device applications.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"45 ","pages":"Article e01133"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen storage potential and physical properties of XSiH3 (X = Bi, Ga) Perovskite hydrides: A first-principles study\",\"authors\":\"Aya Chelh,&nbsp;Boutaina Akenoun,&nbsp;Smahane Dahbi,&nbsp;Ihssan Chakkour,&nbsp;Hasnae Ouichou,&nbsp;Najim Tahiri,&nbsp;Hamid Ez-Zahraouy\",\"doi\":\"10.1016/j.cocom.2025.e01133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we present a comprehensive first-principles investigation of the structural, electronic, optical, thermodynamic, and hydrogen storage properties of cubic perovskite-type hydrides XSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (X = Bi, Ga) within density functional theory using the full-potential linearized augmented plane wave method, as implemented in WIEN2k. Our structural optimization confirms that both BiSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and GaSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> crystallize in a stable cubic structure (space group Pm<span><math><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover></math></span>m). Electronic band structure and density of states calculations confirm the metallic nature of both compounds, with the intersection of the valence and conduction bands at the Fermi level. Optical calculations reveal strong absorption in the visible and ultraviolet spectral regions, with GaSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> exhibiting strong plasmonic behavior. Thermodynamic calculations using the quasi-harmonic Debye model confirm their thermal robustness under varying pressures, with GaSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> showing higher entropy and Debye temperature values. Furthermore, hydrogen storage calculations confirm that GaSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> has a higher gravimetric capacity (3.00 wt%) compared to BiSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (1.26 wt%) and releases hydrogen at a moderately elevated temperature, suggesting its greater suitability for hydrogen storage. However, decomposition energy calculations indicate that partial structural degradation may occur during hydrogen desorption, potentially limiting the reversibility of hydrogen uptake. Additionally, ab initio molecular dynamics simulations demonstrate that both BiSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and GaSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> maintain their structural integrity with only minor thermal fluctuations in total energy, further confirming their dynamical stability. This theoretical analysis provides predictive insight into the multifunctionality of XSiH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> hydrides, which may guide future experimental efforts in energy and optoelectronic device applications.</div></div>\",\"PeriodicalId\":46322,\"journal\":{\"name\":\"Computational Condensed Matter\",\"volume\":\"45 \",\"pages\":\"Article e01133\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352214325001339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325001339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们在密度泛函理论中使用全势线性化增广平面波方法对立方钙钛矿型氢化物XSiH3 (X = Bi, Ga)的结构、电子、光学、热力学和储氢性质进行了全面的第一性原理研究,并在WIEN2k中实现。我们的结构优化证实了BiSiH3和GaSiH3均以稳定的立方结构(空间群Pm3 * m)结晶。电子能带结构和态密度计算证实了这两种化合物的金属性质,价带和导带在费米能级相交。光学计算表明,GaSiH3在可见光和紫外光谱区域具有很强的吸收,表现出很强的等离子体行为。利用准调和Debye模型进行的热力学计算证实了它们在变压力下的热鲁棒性,GaSiH3表现出更高的熵和Debye温值。此外,储氢计算证实,与BiSiH3 (1.26 wt%)相比,GaSiH3具有更高的重量容量(3.00 wt%),并且在适度升高的温度下释放氢气,表明其更适合储氢。然而,分解能计算表明,在氢解吸过程中可能会发生部分结构降解,这可能会限制氢吸收的可逆性。此外,从头算分子动力学模拟表明,BiSiH3和GaSiH3都保持了结构的完整性,总能量只有很小的热波动,进一步证实了它们的动力学稳定性。这一理论分析为XSiH3氢化物的多功能性提供了预测性见解,这可能指导未来在能源和光电子器件应用中的实验工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen storage potential and physical properties of XSiH3 (X = Bi, Ga) Perovskite hydrides: A first-principles study
In this study, we present a comprehensive first-principles investigation of the structural, electronic, optical, thermodynamic, and hydrogen storage properties of cubic perovskite-type hydrides XSiH3 (X = Bi, Ga) within density functional theory using the full-potential linearized augmented plane wave method, as implemented in WIEN2k. Our structural optimization confirms that both BiSiH3 and GaSiH3 crystallize in a stable cubic structure (space group Pm3̄m). Electronic band structure and density of states calculations confirm the metallic nature of both compounds, with the intersection of the valence and conduction bands at the Fermi level. Optical calculations reveal strong absorption in the visible and ultraviolet spectral regions, with GaSiH3 exhibiting strong plasmonic behavior. Thermodynamic calculations using the quasi-harmonic Debye model confirm their thermal robustness under varying pressures, with GaSiH3 showing higher entropy and Debye temperature values. Furthermore, hydrogen storage calculations confirm that GaSiH3 has a higher gravimetric capacity (3.00 wt%) compared to BiSiH3 (1.26 wt%) and releases hydrogen at a moderately elevated temperature, suggesting its greater suitability for hydrogen storage. However, decomposition energy calculations indicate that partial structural degradation may occur during hydrogen desorption, potentially limiting the reversibility of hydrogen uptake. Additionally, ab initio molecular dynamics simulations demonstrate that both BiSiH3 and GaSiH3 maintain their structural integrity with only minor thermal fluctuations in total energy, further confirming their dynamical stability. This theoretical analysis provides predictive insight into the multifunctionality of XSiH3 hydrides, which may guide future experimental efforts in energy and optoelectronic device applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信