energy - gnome:能源应用中选定材料的活数据库

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Paolo De Angelis , Giulio Barletta , Giovanni Trezza , Pietro Asinari , Eliodoro Chiavazzo
{"title":"energy - gnome:能源应用中选定材料的活数据库","authors":"Paolo De Angelis ,&nbsp;Giulio Barletta ,&nbsp;Giovanni Trezza ,&nbsp;Pietro Asinari ,&nbsp;Eliodoro Chiavazzo","doi":"10.1016/j.egyai.2025.100605","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial Intelligence (AI) in materials science is driving significant advancements in the discovery of advanced materials for energy applications. The recent GNoME protocol identifies over 380,000 novel stable crystals. From this, we identify over 38,500 materials with potential as energy materials forming the core of the Energy-GNoME database. Our unique combination of Machine Learning (ML) and Deep Learning (DL) tools mitigates cross-domain data bias using feature spaces, thus identifying potential candidates for thermoelectric materials, novel battery cathodes, and novel perovskites. First, classifiers with both structural and compositional features detect domains of applicability, where we expect enhanced reliability of regressors. Here, regressors are trained to predict key materials properties, like thermoelectric figure of merit (<span><math><mrow><mi>z</mi><mi>T</mi></mrow></math></span>), band gap (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>), and cathode voltage (<span><math><mrow><mi>Δ</mi><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>). This method significantly narrows the pool of potential candidates, serving as an efficient guide for experimental and computational chemistry investigations and accelerating the discovery of materials suited for electricity generation, energy storage and conversion.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"22 ","pages":"Article 100605"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-GNoME: A living database of selected materials for energy applications\",\"authors\":\"Paolo De Angelis ,&nbsp;Giulio Barletta ,&nbsp;Giovanni Trezza ,&nbsp;Pietro Asinari ,&nbsp;Eliodoro Chiavazzo\",\"doi\":\"10.1016/j.egyai.2025.100605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Artificial Intelligence (AI) in materials science is driving significant advancements in the discovery of advanced materials for energy applications. The recent GNoME protocol identifies over 380,000 novel stable crystals. From this, we identify over 38,500 materials with potential as energy materials forming the core of the Energy-GNoME database. Our unique combination of Machine Learning (ML) and Deep Learning (DL) tools mitigates cross-domain data bias using feature spaces, thus identifying potential candidates for thermoelectric materials, novel battery cathodes, and novel perovskites. First, classifiers with both structural and compositional features detect domains of applicability, where we expect enhanced reliability of regressors. Here, regressors are trained to predict key materials properties, like thermoelectric figure of merit (<span><math><mrow><mi>z</mi><mi>T</mi></mrow></math></span>), band gap (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>), and cathode voltage (<span><math><mrow><mi>Δ</mi><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>). This method significantly narrows the pool of potential candidates, serving as an efficient guide for experimental and computational chemistry investigations and accelerating the discovery of materials suited for electricity generation, energy storage and conversion.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"22 \",\"pages\":\"Article 100605\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546825001375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825001375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

材料科学中的人工智能(AI)正在推动能源应用先进材料的发现取得重大进展。最近的GNoME协议确定了超过38万个新的稳定晶体。由此,我们确定了超过38,500种有潜力成为能源材料的材料,形成了energy - gnome数据库的核心。我们独特的机器学习(ML)和深度学习(DL)工具组合使用特征空间减轻了跨域数据偏差,从而确定了热电材料、新型电池阴极和新型钙钛矿的潜在候选材料。首先,具有结构和组成特征的分类器检测适用性领域,我们期望在这些领域增强回归器的可靠性。在这里,回归量被训练来预测关键的材料性能,如热电性能图(zT)、带隙(Eg)和阴极电压(ΔVc)。这种方法大大缩小了潜在候选材料的范围,为实验和计算化学研究提供了有效的指导,并加速了适合发电、储能和转换的材料的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Energy-GNoME: A living database of selected materials for energy applications

Energy-GNoME: A living database of selected materials for energy applications
Artificial Intelligence (AI) in materials science is driving significant advancements in the discovery of advanced materials for energy applications. The recent GNoME protocol identifies over 380,000 novel stable crystals. From this, we identify over 38,500 materials with potential as energy materials forming the core of the Energy-GNoME database. Our unique combination of Machine Learning (ML) and Deep Learning (DL) tools mitigates cross-domain data bias using feature spaces, thus identifying potential candidates for thermoelectric materials, novel battery cathodes, and novel perovskites. First, classifiers with both structural and compositional features detect domains of applicability, where we expect enhanced reliability of regressors. Here, regressors are trained to predict key materials properties, like thermoelectric figure of merit (zT), band gap (Eg), and cathode voltage (ΔVc). This method significantly narrows the pool of potential candidates, serving as an efficient guide for experimental and computational chemistry investigations and accelerating the discovery of materials suited for electricity generation, energy storage and conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信