Jianghao Zhu , Wei Chen , Le Su , Bin Lan , Tingting Pei , Long Jin
{"title":"风力涡轮机的预测性维护:具有经济可靠性协同优化的物理驱动强化学习策略","authors":"Jianghao Zhu , Wei Chen , Le Su , Bin Lan , Tingting Pei , Long Jin","doi":"10.1016/j.egyai.2025.100620","DOIUrl":null,"url":null,"abstract":"<div><div>Wind turbine maintenance optimization faces challenges in balancing economic efficiency with operational reliability under environmental uncertainty. Traditional maintenance approaches exhibit limitations in adaptive decision-making, leading to increased operational costs and reliability risks. This study develops a physics-informed reinforcement learning framework that integrates established domain knowledge with adaptive decision algorithms. The approach embeds physical principles—including Weibull wind dynamics and multi-stage degradation models—into a reinforcement learning architecture, while introducing bidirectional temperature-degradation coupling for enhanced failure prediction. A high-fidelity simulation environment enables policy training through Proximal Policy Optimization, capturing complex interactions between environmental variability and equipment deterioration. The framework was validated through case study implementation using northern China wind farm operational data. Results demonstrate zero-failure operation over simulated 19-year lifecycles, with economic performance improvements of 109.3 % and 54.5 % compared to conventional periodic and threshold-based maintenance strategies. By integrating physical constraints with intelligent algorithms, the method achieves adaptive maintenance decisions based on multi-dimensional state information.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"22 ","pages":"Article 100620"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive maintenance for wind turbines: A physics-driven reinforcement learning strategy with economic-reliability collaborative optimization\",\"authors\":\"Jianghao Zhu , Wei Chen , Le Su , Bin Lan , Tingting Pei , Long Jin\",\"doi\":\"10.1016/j.egyai.2025.100620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wind turbine maintenance optimization faces challenges in balancing economic efficiency with operational reliability under environmental uncertainty. Traditional maintenance approaches exhibit limitations in adaptive decision-making, leading to increased operational costs and reliability risks. This study develops a physics-informed reinforcement learning framework that integrates established domain knowledge with adaptive decision algorithms. The approach embeds physical principles—including Weibull wind dynamics and multi-stage degradation models—into a reinforcement learning architecture, while introducing bidirectional temperature-degradation coupling for enhanced failure prediction. A high-fidelity simulation environment enables policy training through Proximal Policy Optimization, capturing complex interactions between environmental variability and equipment deterioration. The framework was validated through case study implementation using northern China wind farm operational data. Results demonstrate zero-failure operation over simulated 19-year lifecycles, with economic performance improvements of 109.3 % and 54.5 % compared to conventional periodic and threshold-based maintenance strategies. By integrating physical constraints with intelligent algorithms, the method achieves adaptive maintenance decisions based on multi-dimensional state information.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"22 \",\"pages\":\"Article 100620\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546825001521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825001521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Predictive maintenance for wind turbines: A physics-driven reinforcement learning strategy with economic-reliability collaborative optimization
Wind turbine maintenance optimization faces challenges in balancing economic efficiency with operational reliability under environmental uncertainty. Traditional maintenance approaches exhibit limitations in adaptive decision-making, leading to increased operational costs and reliability risks. This study develops a physics-informed reinforcement learning framework that integrates established domain knowledge with adaptive decision algorithms. The approach embeds physical principles—including Weibull wind dynamics and multi-stage degradation models—into a reinforcement learning architecture, while introducing bidirectional temperature-degradation coupling for enhanced failure prediction. A high-fidelity simulation environment enables policy training through Proximal Policy Optimization, capturing complex interactions between environmental variability and equipment deterioration. The framework was validated through case study implementation using northern China wind farm operational data. Results demonstrate zero-failure operation over simulated 19-year lifecycles, with economic performance improvements of 109.3 % and 54.5 % compared to conventional periodic and threshold-based maintenance strategies. By integrating physical constraints with intelligent algorithms, the method achieves adaptive maintenance decisions based on multi-dimensional state information.