Greg Shelley , Allison May , Tyler Robinson , Jinlu Dai , Sethu Pitchiaya , Evan T. Keller
{"title":"睾丸切除术诱导雄激素剥夺介导的小鼠前列腺细胞组成和基因表达调节的时空图谱","authors":"Greg Shelley , Allison May , Tyler Robinson , Jinlu Dai , Sethu Pitchiaya , Evan T. Keller","doi":"10.1016/j.neo.2025.101230","DOIUrl":null,"url":null,"abstract":"<div><div>Androgen deprivation therapy (ADT) remains a cornerstone in the treatment of prostate cancer (PCa), yet most tumors eventually develop resistance. Murine models are widely used to study PCa progression and ADT response, but a detailed understanding of the prostate’s biological response to androgen deprivation in these models is lacking. Here, we present a spatiotemporal analysis of cellular and transcriptional dynamics in the mouse prostate following orchiectomy (ORX)-induced androgen deprivation with a focus on non-epithelial components. We observed progressive involution across all prostate lobes (dorsal, ventral, lateral, and anterior) and distinct lobe-specific temporal gene expression changes post-ORX. Immune cell infiltration markedly increased over time, highlighting a shift in the prostate’s cellular landscape. Single-cell RNA sequencing uncovered a previously undescribed fibroblast subtype—termed ORX-induced fibroblast (OIF)—characterized by high expression of Wnt2, Rorb, and Wif1, with distinct spatial localization. Pathway analysis revealed upregulation of amide and peptide binding functions, alongside suppression of peptidase and endopeptidase activity. Furthermore, dynamic changes in ligand–receptor interactions across lobes underscored the evolving intercellular communication in the post-ORX prostate. By integrating spatial transcriptomics with single-cell profiling, our study generates a high-resolution atlas of the murine prostate’s response to androgen deprivation. These findings provide a foundational resource for interpreting ADT responses in preclinical models of PCa.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"69 ","pages":"Article 101230"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spatiotemporal atlas of orchiectomy-induced androgen deprivation-mediated modulation of cellular composition and gene expression in the mouse prostate\",\"authors\":\"Greg Shelley , Allison May , Tyler Robinson , Jinlu Dai , Sethu Pitchiaya , Evan T. Keller\",\"doi\":\"10.1016/j.neo.2025.101230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Androgen deprivation therapy (ADT) remains a cornerstone in the treatment of prostate cancer (PCa), yet most tumors eventually develop resistance. Murine models are widely used to study PCa progression and ADT response, but a detailed understanding of the prostate’s biological response to androgen deprivation in these models is lacking. Here, we present a spatiotemporal analysis of cellular and transcriptional dynamics in the mouse prostate following orchiectomy (ORX)-induced androgen deprivation with a focus on non-epithelial components. We observed progressive involution across all prostate lobes (dorsal, ventral, lateral, and anterior) and distinct lobe-specific temporal gene expression changes post-ORX. Immune cell infiltration markedly increased over time, highlighting a shift in the prostate’s cellular landscape. Single-cell RNA sequencing uncovered a previously undescribed fibroblast subtype—termed ORX-induced fibroblast (OIF)—characterized by high expression of Wnt2, Rorb, and Wif1, with distinct spatial localization. Pathway analysis revealed upregulation of amide and peptide binding functions, alongside suppression of peptidase and endopeptidase activity. Furthermore, dynamic changes in ligand–receptor interactions across lobes underscored the evolving intercellular communication in the post-ORX prostate. By integrating spatial transcriptomics with single-cell profiling, our study generates a high-resolution atlas of the murine prostate’s response to androgen deprivation. These findings provide a foundational resource for interpreting ADT responses in preclinical models of PCa.</div></div>\",\"PeriodicalId\":18917,\"journal\":{\"name\":\"Neoplasia\",\"volume\":\"69 \",\"pages\":\"Article 101230\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neoplasia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476558625001101\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558625001101","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
A spatiotemporal atlas of orchiectomy-induced androgen deprivation-mediated modulation of cellular composition and gene expression in the mouse prostate
Androgen deprivation therapy (ADT) remains a cornerstone in the treatment of prostate cancer (PCa), yet most tumors eventually develop resistance. Murine models are widely used to study PCa progression and ADT response, but a detailed understanding of the prostate’s biological response to androgen deprivation in these models is lacking. Here, we present a spatiotemporal analysis of cellular and transcriptional dynamics in the mouse prostate following orchiectomy (ORX)-induced androgen deprivation with a focus on non-epithelial components. We observed progressive involution across all prostate lobes (dorsal, ventral, lateral, and anterior) and distinct lobe-specific temporal gene expression changes post-ORX. Immune cell infiltration markedly increased over time, highlighting a shift in the prostate’s cellular landscape. Single-cell RNA sequencing uncovered a previously undescribed fibroblast subtype—termed ORX-induced fibroblast (OIF)—characterized by high expression of Wnt2, Rorb, and Wif1, with distinct spatial localization. Pathway analysis revealed upregulation of amide and peptide binding functions, alongside suppression of peptidase and endopeptidase activity. Furthermore, dynamic changes in ligand–receptor interactions across lobes underscored the evolving intercellular communication in the post-ORX prostate. By integrating spatial transcriptomics with single-cell profiling, our study generates a high-resolution atlas of the murine prostate’s response to androgen deprivation. These findings provide a foundational resource for interpreting ADT responses in preclinical models of PCa.
期刊介绍:
Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.