用于分层图像分类的胶囊网络分类引导路由

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Khondaker Tasrif Noor , Wei Luo , Antonio Robles-Kelly , Leo Yu Zhang , Mohamed Reda Bouadjenek
{"title":"用于分层图像分类的胶囊网络分类引导路由","authors":"Khondaker Tasrif Noor ,&nbsp;Wei Luo ,&nbsp;Antonio Robles-Kelly ,&nbsp;Leo Yu Zhang ,&nbsp;Mohamed Reda Bouadjenek","doi":"10.1016/j.knosys.2025.114444","DOIUrl":null,"url":null,"abstract":"<div><div>Hierarchical multi-label classification in computer vision presents significant challenges in maintaining consistency across different levels of class granularity while capturing fine-grained visual details. This paper presents Taxonomy-aware Capsule Network (HT-CapsNet), a novel capsule network architecture that explicitly incorporates taxonomic relationships into its routing mechanism to address these challenges. Our key innovation lies in a taxonomy-aware routing algorithm that dynamically adjusts capsule connections based on known hierarchical relationships, enabling more effective learning of hierarchical features while enforcing taxonomic consistency. Extensive experiments on six benchmark datasets, including Fashion-MNIST, Marine-Tree, CIFAR-10, CIFAR-100, CUB-200-2011, and Stanford Cars, demonstrate that HT-CapsNet significantly outperforms existing methods across various hierarchical classification metrics. Notably, on CUB-200-2011, HT-CapsNet achieves absolute improvements of <span><math><mrow><mn>10.32</mn><mspace></mspace><mo>%</mo></mrow></math></span>, <span><math><mrow><mn>10.2</mn><mspace></mspace><mo>%</mo></mrow></math></span>, <span><math><mrow><mn>10.3</mn><mspace></mspace><mo>%</mo></mrow></math></span>, and <span><math><mrow><mn>8.55</mn><mspace></mspace><mo>%</mo></mrow></math></span> in hierarchical accuracy, F1-score, consistency, and exact match, respectively, compared to the best-performing baseline. On the Stanford Cars dataset, the model improves upon the best baseline by <span><math><mrow><mn>21.69</mn><mspace></mspace><mo>%</mo></mrow></math></span>, <span><math><mrow><mn>18.29</mn><mspace></mspace><mo>%</mo></mrow></math></span>, <span><math><mrow><mn>37.34</mn><mspace></mspace><mo>%</mo></mrow></math></span>, and <span><math><mrow><mn>19.95</mn><mspace></mspace><mo>%</mo></mrow></math></span> in the same metrics, demonstrating the robustness and effectiveness of our approach for complex hierarchical classification tasks.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"329 ","pages":"Article 114444"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taxonomy-guided routing in capsule network for hierarchical image classification\",\"authors\":\"Khondaker Tasrif Noor ,&nbsp;Wei Luo ,&nbsp;Antonio Robles-Kelly ,&nbsp;Leo Yu Zhang ,&nbsp;Mohamed Reda Bouadjenek\",\"doi\":\"10.1016/j.knosys.2025.114444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hierarchical multi-label classification in computer vision presents significant challenges in maintaining consistency across different levels of class granularity while capturing fine-grained visual details. This paper presents Taxonomy-aware Capsule Network (HT-CapsNet), a novel capsule network architecture that explicitly incorporates taxonomic relationships into its routing mechanism to address these challenges. Our key innovation lies in a taxonomy-aware routing algorithm that dynamically adjusts capsule connections based on known hierarchical relationships, enabling more effective learning of hierarchical features while enforcing taxonomic consistency. Extensive experiments on six benchmark datasets, including Fashion-MNIST, Marine-Tree, CIFAR-10, CIFAR-100, CUB-200-2011, and Stanford Cars, demonstrate that HT-CapsNet significantly outperforms existing methods across various hierarchical classification metrics. Notably, on CUB-200-2011, HT-CapsNet achieves absolute improvements of <span><math><mrow><mn>10.32</mn><mspace></mspace><mo>%</mo></mrow></math></span>, <span><math><mrow><mn>10.2</mn><mspace></mspace><mo>%</mo></mrow></math></span>, <span><math><mrow><mn>10.3</mn><mspace></mspace><mo>%</mo></mrow></math></span>, and <span><math><mrow><mn>8.55</mn><mspace></mspace><mo>%</mo></mrow></math></span> in hierarchical accuracy, F1-score, consistency, and exact match, respectively, compared to the best-performing baseline. On the Stanford Cars dataset, the model improves upon the best baseline by <span><math><mrow><mn>21.69</mn><mspace></mspace><mo>%</mo></mrow></math></span>, <span><math><mrow><mn>18.29</mn><mspace></mspace><mo>%</mo></mrow></math></span>, <span><math><mrow><mn>37.34</mn><mspace></mspace><mo>%</mo></mrow></math></span>, and <span><math><mrow><mn>19.95</mn><mspace></mspace><mo>%</mo></mrow></math></span> in the same metrics, demonstrating the robustness and effectiveness of our approach for complex hierarchical classification tasks.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"329 \",\"pages\":\"Article 114444\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125014832\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125014832","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

计算机视觉中的分层多标签分类在捕获细粒度视觉细节的同时,在保持不同级别类粒度的一致性方面提出了重大挑战。本文提出了分类感知胶囊网络(HT-CapsNet),这是一种新颖的胶囊网络架构,它明确地将分类关系纳入其路由机制以解决这些挑战。我们的关键创新在于分类感知路由算法,该算法基于已知的层次关系动态调整胶囊连接,从而在加强分类一致性的同时更有效地学习层次特征。在六个基准数据集(包括Fashion-MNIST、Marine-Tree、CIFAR-10、CIFAR-100、CUB-200-2011和Stanford Cars)上进行的大量实验表明,HT-CapsNet在各种层次分类指标上显著优于现有方法。值得注意的是,在CUB-200-2011上,HT-CapsNet在分层精度、f1评分、一致性和精确匹配方面分别实现了10.32%、10.2%、10.3%和8.55%的绝对改进。在斯坦福汽车数据集上,在相同的指标下,该模型在最佳基线的基础上分别提高了21.69%、18.29%、37.34%和19.95%,证明了我们的方法对于复杂分层分类任务的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taxonomy-guided routing in capsule network for hierarchical image classification
Hierarchical multi-label classification in computer vision presents significant challenges in maintaining consistency across different levels of class granularity while capturing fine-grained visual details. This paper presents Taxonomy-aware Capsule Network (HT-CapsNet), a novel capsule network architecture that explicitly incorporates taxonomic relationships into its routing mechanism to address these challenges. Our key innovation lies in a taxonomy-aware routing algorithm that dynamically adjusts capsule connections based on known hierarchical relationships, enabling more effective learning of hierarchical features while enforcing taxonomic consistency. Extensive experiments on six benchmark datasets, including Fashion-MNIST, Marine-Tree, CIFAR-10, CIFAR-100, CUB-200-2011, and Stanford Cars, demonstrate that HT-CapsNet significantly outperforms existing methods across various hierarchical classification metrics. Notably, on CUB-200-2011, HT-CapsNet achieves absolute improvements of 10.32%, 10.2%, 10.3%, and 8.55% in hierarchical accuracy, F1-score, consistency, and exact match, respectively, compared to the best-performing baseline. On the Stanford Cars dataset, the model improves upon the best baseline by 21.69%, 18.29%, 37.34%, and 19.95% in the same metrics, demonstrating the robustness and effectiveness of our approach for complex hierarchical classification tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信