PDCR-SR:利用多尺度先验字典和区域特异性对比正则化增强面部超分辨率

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Zefeng Ying , Shuqi wang , Ping Shi , Xiumei Jia
{"title":"PDCR-SR:利用多尺度先验字典和区域特异性对比正则化增强面部超分辨率","authors":"Zefeng Ying ,&nbsp;Shuqi wang ,&nbsp;Ping Shi ,&nbsp;Xiumei Jia","doi":"10.1016/j.displa.2025.103218","DOIUrl":null,"url":null,"abstract":"<div><div>Facial super-resolution involves reconstructing high-quality facial images from low-resolution face images and restoring rich facial details. Existing algorithms often struggle with the restoration of global structural details and localized facial features. To address these challenges, we propose the PDCR-SR method, which introduces a Multi-Scale Prior Dictionary (MSPD) for leveraging high-quality features across scales, enhancing detail reconstruction. Additionally, the Region-Specific Contrastive Regularization Module (RSCR) focuses on improving the texture and accuracy of localized areas such as skin, eyes, nose, and mouth. Extensive comparison results prove that our model has better reconstruction performance on both synthetic faces and real wild faces, superior to other existing methods in terms of quantitative indicators and visual quality.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103218"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PDCR-SR: Enhancing facial super-resolution with multi-scale prior dictionary and region-specific contrastive regularization\",\"authors\":\"Zefeng Ying ,&nbsp;Shuqi wang ,&nbsp;Ping Shi ,&nbsp;Xiumei Jia\",\"doi\":\"10.1016/j.displa.2025.103218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Facial super-resolution involves reconstructing high-quality facial images from low-resolution face images and restoring rich facial details. Existing algorithms often struggle with the restoration of global structural details and localized facial features. To address these challenges, we propose the PDCR-SR method, which introduces a Multi-Scale Prior Dictionary (MSPD) for leveraging high-quality features across scales, enhancing detail reconstruction. Additionally, the Region-Specific Contrastive Regularization Module (RSCR) focuses on improving the texture and accuracy of localized areas such as skin, eyes, nose, and mouth. Extensive comparison results prove that our model has better reconstruction performance on both synthetic faces and real wild faces, superior to other existing methods in terms of quantitative indicators and visual quality.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"91 \",\"pages\":\"Article 103218\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938225002550\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225002550","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

面部超分辨率是指从低分辨率的面部图像中重建高质量的面部图像,并还原丰富的面部细节。现有的算法往往难以恢复全局结构细节和局部面部特征。为了解决这些挑战,我们提出了PDCR-SR方法,该方法引入了一个多尺度先验字典(MSPD)来利用跨尺度的高质量特征,增强细节重建。此外,区域特定对比正则化模块(RSCR)侧重于改善局部区域(如皮肤、眼睛、鼻子和嘴巴)的纹理和准确性。大量的对比结果证明,我们的模型在合成人脸和真实野生人脸上都有更好的重建性能,在定量指标和视觉质量上都优于现有的其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PDCR-SR: Enhancing facial super-resolution with multi-scale prior dictionary and region-specific contrastive regularization
Facial super-resolution involves reconstructing high-quality facial images from low-resolution face images and restoring rich facial details. Existing algorithms often struggle with the restoration of global structural details and localized facial features. To address these challenges, we propose the PDCR-SR method, which introduces a Multi-Scale Prior Dictionary (MSPD) for leveraging high-quality features across scales, enhancing detail reconstruction. Additionally, the Region-Specific Contrastive Regularization Module (RSCR) focuses on improving the texture and accuracy of localized areas such as skin, eyes, nose, and mouth. Extensive comparison results prove that our model has better reconstruction performance on both synthetic faces and real wild faces, superior to other existing methods in terms of quantitative indicators and visual quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信