基于知识选择的不确定性感知弱监督时间动作定位

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Huanqing Yan , Bo Sun , Jun He
{"title":"基于知识选择的不确定性感知弱监督时间动作定位","authors":"Huanqing Yan ,&nbsp;Bo Sun ,&nbsp;Jun He","doi":"10.1016/j.displa.2025.103215","DOIUrl":null,"url":null,"abstract":"<div><div>Weakly-Supervised Temporal Action Localization (WS-TAL) aims to localize actions in untrimmed videos using only video-level labels. The core challenge is the lack of fine-grained annotations, which leads to high prediction uncertainty and confusion between actions and background. To address this, we propose an <em>Uncertainty-Aware and Knowledge-Selection</em> (UAKS) approach. Specifically, we integrate two uncertainty estimation strategies to cooperatively optimize the model and leverage uncertainty to guide external knowledge selection. First, evidential learning estimates model uncertainty, generating more confident predictions via regularization. Second, probabilistic distribution learning captures data uncertainty. Both uncertainties jointly guide model optimization. Additionally, uncertainty-driven knowledge selection enables the efficient utilization of external knowledge under weak supervision. Experiments show that our method improves accuracy and robustness, with 12.9% and 2% accuracy improvements on THUMOS and ActivityNet v1.3 datasets respectively, demonstrating the potential of uncertainty modeling in WS-TAL.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103215"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty-aware weakly supervised temporal action localization with knowledge selection\",\"authors\":\"Huanqing Yan ,&nbsp;Bo Sun ,&nbsp;Jun He\",\"doi\":\"10.1016/j.displa.2025.103215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Weakly-Supervised Temporal Action Localization (WS-TAL) aims to localize actions in untrimmed videos using only video-level labels. The core challenge is the lack of fine-grained annotations, which leads to high prediction uncertainty and confusion between actions and background. To address this, we propose an <em>Uncertainty-Aware and Knowledge-Selection</em> (UAKS) approach. Specifically, we integrate two uncertainty estimation strategies to cooperatively optimize the model and leverage uncertainty to guide external knowledge selection. First, evidential learning estimates model uncertainty, generating more confident predictions via regularization. Second, probabilistic distribution learning captures data uncertainty. Both uncertainties jointly guide model optimization. Additionally, uncertainty-driven knowledge selection enables the efficient utilization of external knowledge under weak supervision. Experiments show that our method improves accuracy and robustness, with 12.9% and 2% accuracy improvements on THUMOS and ActivityNet v1.3 datasets respectively, demonstrating the potential of uncertainty modeling in WS-TAL.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"91 \",\"pages\":\"Article 103215\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938225002525\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225002525","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

弱监督时态动作定位(WS-TAL)旨在仅使用视频级别标签对未修剪视频中的动作进行定位。核心挑战是缺乏细粒度的注释,这导致预测的高度不确定性以及操作和背景之间的混淆。为了解决这个问题,我们提出了一种不确定性意识和知识选择(UAKS)方法。具体来说,我们结合了两种不确定性估计策略来协同优化模型,并利用不确定性来指导外部知识选择。首先,证据学习估计模型的不确定性,通过正则化产生更有信心的预测。其次,概率分布学习捕捉数据的不确定性。这两种不确定性共同指导模型优化。此外,不确定性驱动的知识选择可以在弱监督下有效利用外部知识。实验表明,我们的方法提高了准确率和鲁棒性,在THUMOS和ActivityNet v1.3数据集上的准确率分别提高了12.9%和2%,显示了在WS-TAL中不确定性建模的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty-aware weakly supervised temporal action localization with knowledge selection
Weakly-Supervised Temporal Action Localization (WS-TAL) aims to localize actions in untrimmed videos using only video-level labels. The core challenge is the lack of fine-grained annotations, which leads to high prediction uncertainty and confusion between actions and background. To address this, we propose an Uncertainty-Aware and Knowledge-Selection (UAKS) approach. Specifically, we integrate two uncertainty estimation strategies to cooperatively optimize the model and leverage uncertainty to guide external knowledge selection. First, evidential learning estimates model uncertainty, generating more confident predictions via regularization. Second, probabilistic distribution learning captures data uncertainty. Both uncertainties jointly guide model optimization. Additionally, uncertainty-driven knowledge selection enables the efficient utilization of external knowledge under weak supervision. Experiments show that our method improves accuracy and robustness, with 12.9% and 2% accuracy improvements on THUMOS and ActivityNet v1.3 datasets respectively, demonstrating the potential of uncertainty modeling in WS-TAL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信