一类类rsa密码系统的一种新的广义格攻击

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Michel Seck, Abdoul Aziz Ciss
{"title":"一类类rsa密码系统的一种新的广义格攻击","authors":"Michel Seck,&nbsp;Abdoul Aziz Ciss","doi":"10.1016/j.tcs.2025.115548","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, Cotan and Teşeleanu (NordSec 2023) published an RSA-like cryptosystem. While in RSA, the public exponent <span><math><mi>e</mi></math></span> and the private exponent <span><math><mi>d</mi></math></span> are related by the equation <span><math><mrow><mi>e</mi><mi>d</mi><mo>−</mo><mi>k</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></mrow></math></span>, in their scheme, <span><math><mi>e</mi></math></span> and <span><math><mi>d</mi></math></span> are related to the equation <span><math><mrow><mi>e</mi><mi>d</mi><mo>−</mo><mi>k</mi><mrow><mo>(</mo><msup><mi>p</mi><mi>n</mi></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><msup><mi>q</mi><mi>n</mi></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for some positive integer <span><math><mi>n</mi></math></span>. Teşeleanu (CSCML 2024) showed that one can factor the modulus <span><math><mi>N</mi></math></span> using a lattice attack if <span><math><mi>d</mi></math></span> is small. In this paper, we extend his attack by showing that if the private exponent is either too small or too large, one can factor <span><math><mi>N</mi></math></span> in polynomial time by solving the generalized equation <span><math><mrow><mi>e</mi><mi>u</mi><mo>−</mo><mrow><mo>(</mo><msup><mi>p</mi><mi>n</mi></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><msup><mi>q</mi><mi>n</mi></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>v</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow></math></span> using lattice reduction techniques.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1055 ","pages":"Article 115548"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new generalized lattice attack against a family of RSA-like cryptosystems\",\"authors\":\"Michel Seck,&nbsp;Abdoul Aziz Ciss\",\"doi\":\"10.1016/j.tcs.2025.115548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, Cotan and Teşeleanu (NordSec 2023) published an RSA-like cryptosystem. While in RSA, the public exponent <span><math><mi>e</mi></math></span> and the private exponent <span><math><mi>d</mi></math></span> are related by the equation <span><math><mrow><mi>e</mi><mi>d</mi><mo>−</mo><mi>k</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></mrow></math></span>, in their scheme, <span><math><mi>e</mi></math></span> and <span><math><mi>d</mi></math></span> are related to the equation <span><math><mrow><mi>e</mi><mi>d</mi><mo>−</mo><mi>k</mi><mrow><mo>(</mo><msup><mi>p</mi><mi>n</mi></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><msup><mi>q</mi><mi>n</mi></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for some positive integer <span><math><mi>n</mi></math></span>. Teşeleanu (CSCML 2024) showed that one can factor the modulus <span><math><mi>N</mi></math></span> using a lattice attack if <span><math><mi>d</mi></math></span> is small. In this paper, we extend his attack by showing that if the private exponent is either too small or too large, one can factor <span><math><mi>N</mi></math></span> in polynomial time by solving the generalized equation <span><math><mrow><mi>e</mi><mi>u</mi><mo>−</mo><mrow><mo>(</mo><msup><mi>p</mi><mi>n</mi></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><msup><mi>q</mi><mi>n</mi></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>v</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow></math></span> using lattice reduction techniques.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1055 \",\"pages\":\"Article 115548\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525004864\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004864","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

最近,Cotan和te eleanu (NordSec 2023)发布了一个类似rsa的密码系统。而在RSA中,公共指数e和私有指数d与方程ed−k(p−1)(q−1)=1有关,在他们的方案中,e和d与方程ed−k(pn−1)(qn−1)=1有关,对于某个正整数n。te eleanu (CSCML 2024)表明,如果d很小,可以使用晶格攻击来分解模n。在本文中,我们扩展了他的攻击,证明了如果私有指数太小或太大,可以通过使用格约简技术求解广义方程eu−(pn−1)(qn−1)v=±1在多项式时间内因子N。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new generalized lattice attack against a family of RSA-like cryptosystems
Recently, Cotan and Teşeleanu (NordSec 2023) published an RSA-like cryptosystem. While in RSA, the public exponent e and the private exponent d are related by the equation edk(p1)(q1)=1, in their scheme, e and d are related to the equation edk(pn1)(qn1)=1 for some positive integer n. Teşeleanu (CSCML 2024) showed that one can factor the modulus N using a lattice attack if d is small. In this paper, we extend his attack by showing that if the private exponent is either too small or too large, one can factor N in polynomial time by solving the generalized equation eu(pn1)(qn1)v=±1 using lattice reduction techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信