hri混淆:一个多模态数据集,用于建模和检测位于人机交互中的用户混淆

IF 1.4 Q3 MULTIDISCIPLINARY SCIENCES
Na Li , Jane Courtney , Robert Ross
{"title":"hri混淆:一个多模态数据集,用于建模和检测位于人机交互中的用户混淆","authors":"Na Li ,&nbsp;Jane Courtney ,&nbsp;Robert Ross","doi":"10.1016/j.dib.2025.112047","DOIUrl":null,"url":null,"abstract":"<div><div>The dataset was collected from 28 participants (17 female, 9 male, and 1 non-binary) for a study aimed at modelling and detecting user social behaviours with different confusion states in task-oriented situated human-robot interaction (HRI). The dataset consists of user facial body video recordings synchronised with user speech across three designed experiment scenarios (Tasks 1 - 3). Each experiment lasted approximately one hour per participant. The videos are segmented into individual clips corresponding to specific experimental conversations under predefined conditions: general confusion and non-confusion for Task 1 and 3; and productive confusion, unproductive confusion, and non-confusion for Task 2.</div><div>In total, the dataset contains 789 video clips (body: 392, face: 397). Each video is recorded in high-definition RGB format, capturing user facial expressions or body language along with their speech. These multimodal data provide a valuable resource for studying user cognitive and mental states in human-robot interaction and human-computer interaction.</div><div>The data collected for Task 2 was used in [9]. In compliance with GDPR (General Data Protection Regulation) and DPIA (data protection impact assessment) guidelines, the dataset is freely available upon request at <span><span>https://sites.google.com/view/hridatarequst/home</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"62 ","pages":"Article 112047"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HRI-confusion: A multimodal dataset for modelling and detecting user confusion in situated human-robot interaction\",\"authors\":\"Na Li ,&nbsp;Jane Courtney ,&nbsp;Robert Ross\",\"doi\":\"10.1016/j.dib.2025.112047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The dataset was collected from 28 participants (17 female, 9 male, and 1 non-binary) for a study aimed at modelling and detecting user social behaviours with different confusion states in task-oriented situated human-robot interaction (HRI). The dataset consists of user facial body video recordings synchronised with user speech across three designed experiment scenarios (Tasks 1 - 3). Each experiment lasted approximately one hour per participant. The videos are segmented into individual clips corresponding to specific experimental conversations under predefined conditions: general confusion and non-confusion for Task 1 and 3; and productive confusion, unproductive confusion, and non-confusion for Task 2.</div><div>In total, the dataset contains 789 video clips (body: 392, face: 397). Each video is recorded in high-definition RGB format, capturing user facial expressions or body language along with their speech. These multimodal data provide a valuable resource for studying user cognitive and mental states in human-robot interaction and human-computer interaction.</div><div>The data collected for Task 2 was used in [9]. In compliance with GDPR (General Data Protection Regulation) and DPIA (data protection impact assessment) guidelines, the dataset is freely available upon request at <span><span>https://sites.google.com/view/hridatarequst/home</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":\"62 \",\"pages\":\"Article 112047\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352340925007693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925007693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

数据集来自28名参与者(17名女性,9名男性,1名非二元),旨在建模和检测任务导向情境人机交互(HRI)中不同困惑状态的用户社会行为。该数据集包括用户面部身体视频记录,并在三个设计的实验场景(任务1 - 3)中与用户语音同步。每个实验持续大约一个小时。视频被分割成单独的片段,对应于预定义条件下的特定实验对话:任务1和任务3的一般混淆和非混淆;以及有效混淆,非有效混淆和非混淆。该数据集总共包含789个视频片段(主体:392,面部:397)。每个视频都以高清RGB格式录制,捕捉用户的面部表情或肢体语言以及他们的讲话。这些多模态数据为研究人机交互和人机交互中的用户认知和心理状态提供了宝贵的资源。为Task 2收集的数据在[9]中使用。根据GDPR(通用数据保护条例)和DPIA(数据保护影响评估)指南,该数据集可在https://sites.google.com/view/hridatarequst/home上免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HRI-confusion: A multimodal dataset for modelling and detecting user confusion in situated human-robot interaction
The dataset was collected from 28 participants (17 female, 9 male, and 1 non-binary) for a study aimed at modelling and detecting user social behaviours with different confusion states in task-oriented situated human-robot interaction (HRI). The dataset consists of user facial body video recordings synchronised with user speech across three designed experiment scenarios (Tasks 1 - 3). Each experiment lasted approximately one hour per participant. The videos are segmented into individual clips corresponding to specific experimental conversations under predefined conditions: general confusion and non-confusion for Task 1 and 3; and productive confusion, unproductive confusion, and non-confusion for Task 2.
In total, the dataset contains 789 video clips (body: 392, face: 397). Each video is recorded in high-definition RGB format, capturing user facial expressions or body language along with their speech. These multimodal data provide a valuable resource for studying user cognitive and mental states in human-robot interaction and human-computer interaction.
The data collected for Task 2 was used in [9]. In compliance with GDPR (General Data Protection Regulation) and DPIA (data protection impact assessment) guidelines, the dataset is freely available upon request at https://sites.google.com/view/hridatarequst/home.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信