关于初始数据集超曲面g稳定性的一些结果

IF 1.3 2区 数学 Q1 MATHEMATICS
A.B. Lima , R.M. Batista , P.A. Sousa
{"title":"关于初始数据集超曲面g稳定性的一些结果","authors":"A.B. Lima ,&nbsp;R.M. Batista ,&nbsp;P.A. Sousa","doi":"10.1016/j.na.2025.113914","DOIUrl":null,"url":null,"abstract":"<div><div>We study the <span><math><mi>g</mi></math></span>-stability of hypersurfaces <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> with null expansion <span><math><mrow><msup><mrow><mi>θ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mi>h</mi><mo>≥</mo><mn>0</mn></mrow></math></span> in an <span><math><mi>n</mi></math></span>-dimensional initial data set <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with cosmological constant <span><math><mi>Λ</mi></math></span>. First, under natural energy conditions, we demonstrate that <span><math><mrow><msup><mrow><mi>Σ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>⊂</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> admits a metric with positive scalar curvature. Second, for a <span><math><mi>g</mi></math></span>-stable surface <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of genus <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>, we establish an inequality relating the area of <span><math><mi>Σ</mi></math></span>, its genus, <span><math><mi>Λ</mi></math></span>, and the charge <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>. Moreover, if equality holds and <span><math><mrow><mi>Λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is a round 2-sphere. Finally, for a <span><math><mi>g</mi></math></span>-stable, two-sided, closed hypersurface <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> in a 5-dimensional initial data set <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span> satisfying natural energy conditions, we derive an inequality involving the area of <span><math><mi>Σ</mi></math></span>, its charge <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>, and a positive constant depending on the total traceless Ricci curvature of <span><math><mi>Σ</mi></math></span>. Equality implies that <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> is isometric to <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113914"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on g-stability for hypersurfaces in an initial data set\",\"authors\":\"A.B. Lima ,&nbsp;R.M. Batista ,&nbsp;P.A. Sousa\",\"doi\":\"10.1016/j.na.2025.113914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the <span><math><mi>g</mi></math></span>-stability of hypersurfaces <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> with null expansion <span><math><mrow><msup><mrow><mi>θ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mi>h</mi><mo>≥</mo><mn>0</mn></mrow></math></span> in an <span><math><mi>n</mi></math></span>-dimensional initial data set <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with cosmological constant <span><math><mi>Λ</mi></math></span>. First, under natural energy conditions, we demonstrate that <span><math><mrow><msup><mrow><mi>Σ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>⊂</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> admits a metric with positive scalar curvature. Second, for a <span><math><mi>g</mi></math></span>-stable surface <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of genus <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>, we establish an inequality relating the area of <span><math><mi>Σ</mi></math></span>, its genus, <span><math><mi>Λ</mi></math></span>, and the charge <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>. Moreover, if equality holds and <span><math><mrow><mi>Λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is a round 2-sphere. Finally, for a <span><math><mi>g</mi></math></span>-stable, two-sided, closed hypersurface <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> in a 5-dimensional initial data set <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span> satisfying natural energy conditions, we derive an inequality involving the area of <span><math><mi>Σ</mi></math></span>, its charge <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>, and a positive constant depending on the total traceless Ricci curvature of <span><math><mi>Σ</mi></math></span>. Equality implies that <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> is isometric to <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113914\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001683\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001683","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在具有宇宙常数Λ的n维初始数据集Mn中,研究了零展开θ+=h≥0的超曲面Σn−1的g稳定性。首先,在自然能量条件下,我们证明Σn−1∧Mn允许一个具有正标量曲率的度规。其次,对于g属稳定曲面Σ2 (Σ),我们建立了一个关于Σ、其属、Λ和电荷q(Σ)的面积的不等式。此外,如果等式成立并且Λ>;0,则Σ2是一个圆的2球。最后,对于满足自然能量条件的5维初始数据集M5中的g稳定的双面封闭超曲面Σ4,我们导出了一个不等式,该不等式涉及Σ的面积,其电荷q(Σ)和依赖于Σ的总无迹Ricci曲率的正常数。等式表明Σ4与S4等长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on g-stability for hypersurfaces in an initial data set
We study the g-stability of hypersurfaces Σn1 with null expansion θ+=h0 in an n-dimensional initial data set Mn with cosmological constant Λ. First, under natural energy conditions, we demonstrate that Σn1Mn admits a metric with positive scalar curvature. Second, for a g-stable surface Σ2 of genus g(Σ), we establish an inequality relating the area of Σ, its genus, Λ, and the charge q(Σ). Moreover, if equality holds and Λ>0, Σ2 is a round 2-sphere. Finally, for a g-stable, two-sided, closed hypersurface Σ4 in a 5-dimensional initial data set M5 satisfying natural energy conditions, we derive an inequality involving the area of Σ, its charge q(Σ), and a positive constant depending on the total traceless Ricci curvature of Σ. Equality implies that Σ4 is isometric to S4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信