{"title":"关于初始数据集超曲面g稳定性的一些结果","authors":"A.B. Lima , R.M. Batista , P.A. Sousa","doi":"10.1016/j.na.2025.113914","DOIUrl":null,"url":null,"abstract":"<div><div>We study the <span><math><mi>g</mi></math></span>-stability of hypersurfaces <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> with null expansion <span><math><mrow><msup><mrow><mi>θ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mi>h</mi><mo>≥</mo><mn>0</mn></mrow></math></span> in an <span><math><mi>n</mi></math></span>-dimensional initial data set <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with cosmological constant <span><math><mi>Λ</mi></math></span>. First, under natural energy conditions, we demonstrate that <span><math><mrow><msup><mrow><mi>Σ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>⊂</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> admits a metric with positive scalar curvature. Second, for a <span><math><mi>g</mi></math></span>-stable surface <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of genus <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>, we establish an inequality relating the area of <span><math><mi>Σ</mi></math></span>, its genus, <span><math><mi>Λ</mi></math></span>, and the charge <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>. Moreover, if equality holds and <span><math><mrow><mi>Λ</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is a round 2-sphere. Finally, for a <span><math><mi>g</mi></math></span>-stable, two-sided, closed hypersurface <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> in a 5-dimensional initial data set <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span> satisfying natural energy conditions, we derive an inequality involving the area of <span><math><mi>Σ</mi></math></span>, its charge <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>, and a positive constant depending on the total traceless Ricci curvature of <span><math><mi>Σ</mi></math></span>. Equality implies that <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> is isometric to <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113914"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on g-stability for hypersurfaces in an initial data set\",\"authors\":\"A.B. Lima , R.M. Batista , P.A. Sousa\",\"doi\":\"10.1016/j.na.2025.113914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the <span><math><mi>g</mi></math></span>-stability of hypersurfaces <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> with null expansion <span><math><mrow><msup><mrow><mi>θ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mi>h</mi><mo>≥</mo><mn>0</mn></mrow></math></span> in an <span><math><mi>n</mi></math></span>-dimensional initial data set <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with cosmological constant <span><math><mi>Λ</mi></math></span>. First, under natural energy conditions, we demonstrate that <span><math><mrow><msup><mrow><mi>Σ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>⊂</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> admits a metric with positive scalar curvature. Second, for a <span><math><mi>g</mi></math></span>-stable surface <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of genus <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>, we establish an inequality relating the area of <span><math><mi>Σ</mi></math></span>, its genus, <span><math><mi>Λ</mi></math></span>, and the charge <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>. Moreover, if equality holds and <span><math><mrow><mi>Λ</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is a round 2-sphere. Finally, for a <span><math><mi>g</mi></math></span>-stable, two-sided, closed hypersurface <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> in a 5-dimensional initial data set <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span> satisfying natural energy conditions, we derive an inequality involving the area of <span><math><mi>Σ</mi></math></span>, its charge <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>, and a positive constant depending on the total traceless Ricci curvature of <span><math><mi>Σ</mi></math></span>. Equality implies that <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> is isometric to <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113914\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001683\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001683","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some results on g-stability for hypersurfaces in an initial data set
We study the -stability of hypersurfaces with null expansion in an -dimensional initial data set with cosmological constant . First, under natural energy conditions, we demonstrate that admits a metric with positive scalar curvature. Second, for a -stable surface of genus , we establish an inequality relating the area of , its genus, , and the charge . Moreover, if equality holds and , is a round 2-sphere. Finally, for a -stable, two-sided, closed hypersurface in a 5-dimensional initial data set satisfying natural energy conditions, we derive an inequality involving the area of , its charge , and a positive constant depending on the total traceless Ricci curvature of . Equality implies that is isometric to .
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.