空气中流动电池入氧量的定量及其对溶液化学的影响

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Jordan L. McMillan,  and , Nicolas E. Holubowitch*, 
{"title":"空气中流动电池入氧量的定量及其对溶液化学的影响","authors":"Jordan L. McMillan,&nbsp; and ,&nbsp;Nicolas E. Holubowitch*,&nbsp;","doi":"10.1021/acs.jpcc.5c04808","DOIUrl":null,"url":null,"abstract":"<p >A flow battery-adapted redox flow cell is designed to measure the rate of ambient oxygen diffusing into air-sensitive electrolytes. This simple method uses a viologen radical cation-mediated two-electron oxygen reduction reaction to quantify oxygen-related performance issues affecting myriad electrochemical applications where a glovebox is impractical. Generally, using low-oxygen-permeability materials in a typical bench-scale flow cell configuration, ambient oxygen can be expected to saturate the electrolyte after about 15 min, leading to self-discharge capacity losses on the order of 13 mAh d<sup>–1</sup>, with additional losses of 2.4 mAh d<sup>–1</sup> cm<sub>silicone</sub><sup>–2</sup> when employing silicone. Th ORR redox mediator used for oxygen ingress measurements herein, dextrosil viologen, is an emerging organic flow battery anolyte with a molecular design that enables tolerance toward hydroxide and peroxide accumulation in solution.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 37","pages":"16552–16558"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Oxygen Ingress and Its Impact on Solution Chemistry for Flow Cells Operated in Air\",\"authors\":\"Jordan L. McMillan,&nbsp; and ,&nbsp;Nicolas E. Holubowitch*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c04808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A flow battery-adapted redox flow cell is designed to measure the rate of ambient oxygen diffusing into air-sensitive electrolytes. This simple method uses a viologen radical cation-mediated two-electron oxygen reduction reaction to quantify oxygen-related performance issues affecting myriad electrochemical applications where a glovebox is impractical. Generally, using low-oxygen-permeability materials in a typical bench-scale flow cell configuration, ambient oxygen can be expected to saturate the electrolyte after about 15 min, leading to self-discharge capacity losses on the order of 13 mAh d<sup>–1</sup>, with additional losses of 2.4 mAh d<sup>–1</sup> cm<sub>silicone</sub><sup>–2</sup> when employing silicone. Th ORR redox mediator used for oxygen ingress measurements herein, dextrosil viologen, is an emerging organic flow battery anolyte with a molecular design that enables tolerance toward hydroxide and peroxide accumulation in solution.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 37\",\"pages\":\"16552–16558\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c04808\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c04808","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

设计了一种适合液流电池的氧化还原液流电池,用于测量环境氧扩散到空气敏感电解质中的速率。这种简单的方法使用紫根自由基阳离子介导的双电子氧还原反应来量化影响无数电化学应用的氧相关性能问题,而手套箱是不切实际的。通常,在典型的实验规模液流电池配置中使用低氧渗透率材料,预计环境氧将在大约15分钟后使电解质饱和,导致自放电容量损失约为13 mAh d-1,当使用硅酮时,额外损失为2.4 mAh d-1。用于测量氧气进入的ORR氧化还原介质,dextrosil viologen,是一种新兴的有机液流电池阳极电解质,其分子设计能够耐受溶液中的氢氧化物和过氧化物积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantifying Oxygen Ingress and Its Impact on Solution Chemistry for Flow Cells Operated in Air

Quantifying Oxygen Ingress and Its Impact on Solution Chemistry for Flow Cells Operated in Air

A flow battery-adapted redox flow cell is designed to measure the rate of ambient oxygen diffusing into air-sensitive electrolytes. This simple method uses a viologen radical cation-mediated two-electron oxygen reduction reaction to quantify oxygen-related performance issues affecting myriad electrochemical applications where a glovebox is impractical. Generally, using low-oxygen-permeability materials in a typical bench-scale flow cell configuration, ambient oxygen can be expected to saturate the electrolyte after about 15 min, leading to self-discharge capacity losses on the order of 13 mAh d–1, with additional losses of 2.4 mAh d–1 cmsilicone–2 when employing silicone. Th ORR redox mediator used for oxygen ingress measurements herein, dextrosil viologen, is an emerging organic flow battery anolyte with a molecular design that enables tolerance toward hydroxide and peroxide accumulation in solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信