{"title":"具有投资组合约束的连续时间最优投资:一种强化学习方法","authors":"Huy Chau , Duy Nguyen , Thai Nguyen","doi":"10.1016/j.ejor.2025.08.032","DOIUrl":null,"url":null,"abstract":"<div><div>In a reinforcement learning (RL) framework, we study the exploratory version of the continuous time expected utility (EU) maximization problem with a portfolio constraint that includes widely-used financial regulations such as short-selling constraints and borrowing prohibition. The optimal feedback policy of the exploratory unconstrained classical EU problem is shown to be Gaussian. In the case where the portfolio weight is constrained to a given interval, the corresponding constrained optimal exploratory policy follows a truncated Gaussian distribution. We verify that the closed form optimal solution obtained for logarithmic utility and quadratic utility for both unconstrained and constrained situations converge to the non-exploratory expected utility counterpart when the exploration weight goes to zero. Finally, we establish a policy improvement theorem and devise an implementable reinforcement learning algorithm by casting the optimal problem in a martingale framework. Our numerical examples show that exploration leads to an optimal wealth process that is more dispersedly distributed with heavier tail compared to that of the case without exploration. This effect becomes less significant as the exploration parameter is smaller. Moreover, the numerical implementation also confirms the intuitive understanding that a broader domain of investment opportunities necessitates a higher exploration cost. Notably, when subjected to both short-selling and money borrowing constraints, the exploration cost becomes negligible compared to the unconstrained case.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"328 3","pages":"Pages 1068-1092"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous-time optimal investment with portfolio constraints: A reinforcement learning approach\",\"authors\":\"Huy Chau , Duy Nguyen , Thai Nguyen\",\"doi\":\"10.1016/j.ejor.2025.08.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In a reinforcement learning (RL) framework, we study the exploratory version of the continuous time expected utility (EU) maximization problem with a portfolio constraint that includes widely-used financial regulations such as short-selling constraints and borrowing prohibition. The optimal feedback policy of the exploratory unconstrained classical EU problem is shown to be Gaussian. In the case where the portfolio weight is constrained to a given interval, the corresponding constrained optimal exploratory policy follows a truncated Gaussian distribution. We verify that the closed form optimal solution obtained for logarithmic utility and quadratic utility for both unconstrained and constrained situations converge to the non-exploratory expected utility counterpart when the exploration weight goes to zero. Finally, we establish a policy improvement theorem and devise an implementable reinforcement learning algorithm by casting the optimal problem in a martingale framework. Our numerical examples show that exploration leads to an optimal wealth process that is more dispersedly distributed with heavier tail compared to that of the case without exploration. This effect becomes less significant as the exploration parameter is smaller. Moreover, the numerical implementation also confirms the intuitive understanding that a broader domain of investment opportunities necessitates a higher exploration cost. Notably, when subjected to both short-selling and money borrowing constraints, the exploration cost becomes negligible compared to the unconstrained case.</div></div>\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"328 3\",\"pages\":\"Pages 1068-1092\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037722172500671X\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037722172500671X","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Continuous-time optimal investment with portfolio constraints: A reinforcement learning approach
In a reinforcement learning (RL) framework, we study the exploratory version of the continuous time expected utility (EU) maximization problem with a portfolio constraint that includes widely-used financial regulations such as short-selling constraints and borrowing prohibition. The optimal feedback policy of the exploratory unconstrained classical EU problem is shown to be Gaussian. In the case where the portfolio weight is constrained to a given interval, the corresponding constrained optimal exploratory policy follows a truncated Gaussian distribution. We verify that the closed form optimal solution obtained for logarithmic utility and quadratic utility for both unconstrained and constrained situations converge to the non-exploratory expected utility counterpart when the exploration weight goes to zero. Finally, we establish a policy improvement theorem and devise an implementable reinforcement learning algorithm by casting the optimal problem in a martingale framework. Our numerical examples show that exploration leads to an optimal wealth process that is more dispersedly distributed with heavier tail compared to that of the case without exploration. This effect becomes less significant as the exploration parameter is smaller. Moreover, the numerical implementation also confirms the intuitive understanding that a broader domain of investment opportunities necessitates a higher exploration cost. Notably, when subjected to both short-selling and money borrowing constraints, the exploration cost becomes negligible compared to the unconstrained case.
期刊介绍:
The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.