线性化浅水方程的辛哈密顿杂化不连续伽辽金方法

IF 7.3 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Cristhian Núñez , Manuel A. Sánchez
{"title":"线性化浅水方程的辛哈密顿杂化不连续伽辽金方法","authors":"Cristhian Núñez ,&nbsp;Manuel A. Sánchez","doi":"10.1016/j.cma.2025.118383","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the numerical approximation of the linearized shallow water equations using hybridizable discontinuous Galerkin (HDG) methods, leveraging the Hamiltonian structure of the evolution system. First, we propose an equivalent formulation of the equations by introducing an auxiliary variable. Then, we discretize the space variables using HDG methods, resulting in a semi-discrete scheme that preserves a discrete version of the Hamiltonian structure. The use of an alternative formulation with the auxiliary variable is crucial for developing the HDG scheme that preserves this Hamiltonian structure. The resulting system is subsequently discretized in time using symplectic integrators, ensuring the energy conservation of the fully discrete scheme. We present numerical experiments that demonstrate optimal convergence rates for all variables and showcase the conservation of total energy, as well as the evolution of other physical quantities.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"447 ","pages":"Article 118383"},"PeriodicalIF":7.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectic Hamiltonian hybridizable discontinuous Galerkin methods for linearized shallow water equations\",\"authors\":\"Cristhian Núñez ,&nbsp;Manuel A. Sánchez\",\"doi\":\"10.1016/j.cma.2025.118383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on the numerical approximation of the linearized shallow water equations using hybridizable discontinuous Galerkin (HDG) methods, leveraging the Hamiltonian structure of the evolution system. First, we propose an equivalent formulation of the equations by introducing an auxiliary variable. Then, we discretize the space variables using HDG methods, resulting in a semi-discrete scheme that preserves a discrete version of the Hamiltonian structure. The use of an alternative formulation with the auxiliary variable is crucial for developing the HDG scheme that preserves this Hamiltonian structure. The resulting system is subsequently discretized in time using symplectic integrators, ensuring the energy conservation of the fully discrete scheme. We present numerical experiments that demonstrate optimal convergence rates for all variables and showcase the conservation of total energy, as well as the evolution of other physical quantities.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"447 \",\"pages\":\"Article 118383\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525006553\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525006553","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用演化系统的哈密顿结构,利用杂交不连续伽辽金(HDG)方法对线性化浅水方程组进行数值逼近。首先,我们通过引入辅助变量提出了方程的等效公式。然后,我们使用HDG方法将空间变量离散化,得到一个半离散格式,该格式保留了哈密顿结构的离散版本。使用具有辅助变量的替代公式对于开发保留这种哈密顿结构的HDG方案至关重要。结果系统随后使用辛积分器在时间上离散化,保证了完全离散格式的能量守恒。我们提出了数值实验,证明了所有变量的最佳收敛率,并展示了总能量守恒,以及其他物理量的演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic Hamiltonian hybridizable discontinuous Galerkin methods for linearized shallow water equations
This paper focuses on the numerical approximation of the linearized shallow water equations using hybridizable discontinuous Galerkin (HDG) methods, leveraging the Hamiltonian structure of the evolution system. First, we propose an equivalent formulation of the equations by introducing an auxiliary variable. Then, we discretize the space variables using HDG methods, resulting in a semi-discrete scheme that preserves a discrete version of the Hamiltonian structure. The use of an alternative formulation with the auxiliary variable is crucial for developing the HDG scheme that preserves this Hamiltonian structure. The resulting system is subsequently discretized in time using symplectic integrators, ensuring the energy conservation of the fully discrete scheme. We present numerical experiments that demonstrate optimal convergence rates for all variables and showcase the conservation of total energy, as well as the evolution of other physical quantities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信