{"title":"双变量阶段退化系统的可靠性分析与剩余使用寿命估计","authors":"Bincheng Wen, Xin Zhao, Haizhen Zhu, Jinjun Cheng, Changjun Li, Mingqing Xiao","doi":"10.1016/j.compind.2025.104368","DOIUrl":null,"url":null,"abstract":"<div><div>On the one hand, due to changes in the operating conditions or working environment of the equipment, the degradation process often exhibits characteristics of two-phase or even multi-phase. In contrast to single-phase degradation models, two-phase degradation modeling necessitates considering the variability of the change points and analyzing the characteristics of the degraded state at the change points. On the other hand, as sensor technology advances, multi-sensor data collection systems have become increasingly widespread, and combining data from several sources can considerably improve the accuracy of remaining useful life (RUL) estimation. However, the current research fails to simultaneously incorporate both of the aforementioned conditions. Consequently, constructing a multivariate phased deterioration model and estimating the RUL still present a significant challenge. With this particular consideration, this paper constructs a two-variable phased degradation model based on the Wiener process. The RUL analytic expression is derived by taking into account the diversity of individuals and the random nature of change points. A novel approach is provided to achieve precise detection of change points. The proposed model’s validity is ultimately confirmed through the use of a simulation dataset as well as two real working datasets.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"173 ","pages":"Article 104368"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability analysis and remaining useful life estimation of a two-variable phased degradation system\",\"authors\":\"Bincheng Wen, Xin Zhao, Haizhen Zhu, Jinjun Cheng, Changjun Li, Mingqing Xiao\",\"doi\":\"10.1016/j.compind.2025.104368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>On the one hand, due to changes in the operating conditions or working environment of the equipment, the degradation process often exhibits characteristics of two-phase or even multi-phase. In contrast to single-phase degradation models, two-phase degradation modeling necessitates considering the variability of the change points and analyzing the characteristics of the degraded state at the change points. On the other hand, as sensor technology advances, multi-sensor data collection systems have become increasingly widespread, and combining data from several sources can considerably improve the accuracy of remaining useful life (RUL) estimation. However, the current research fails to simultaneously incorporate both of the aforementioned conditions. Consequently, constructing a multivariate phased deterioration model and estimating the RUL still present a significant challenge. With this particular consideration, this paper constructs a two-variable phased degradation model based on the Wiener process. The RUL analytic expression is derived by taking into account the diversity of individuals and the random nature of change points. A novel approach is provided to achieve precise detection of change points. The proposed model’s validity is ultimately confirmed through the use of a simulation dataset as well as two real working datasets.</div></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"173 \",\"pages\":\"Article 104368\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361525001332\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361525001332","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Reliability analysis and remaining useful life estimation of a two-variable phased degradation system
On the one hand, due to changes in the operating conditions or working environment of the equipment, the degradation process often exhibits characteristics of two-phase or even multi-phase. In contrast to single-phase degradation models, two-phase degradation modeling necessitates considering the variability of the change points and analyzing the characteristics of the degraded state at the change points. On the other hand, as sensor technology advances, multi-sensor data collection systems have become increasingly widespread, and combining data from several sources can considerably improve the accuracy of remaining useful life (RUL) estimation. However, the current research fails to simultaneously incorporate both of the aforementioned conditions. Consequently, constructing a multivariate phased deterioration model and estimating the RUL still present a significant challenge. With this particular consideration, this paper constructs a two-variable phased degradation model based on the Wiener process. The RUL analytic expression is derived by taking into account the diversity of individuals and the random nature of change points. A novel approach is provided to achieve precise detection of change points. The proposed model’s validity is ultimately confirmed through the use of a simulation dataset as well as two real working datasets.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.