MFFC-Net:基于纹理分析和迁移学习技术的肺超声图像多特征融合深度网络对肺水肿分类的初步研究。

Ngoc Thang Bui, Charlie E Luoma, Xiaoming Zhang
{"title":"MFFC-Net:基于纹理分析和迁移学习技术的肺超声图像多特征融合深度网络对肺水肿分类的初步研究。","authors":"Ngoc Thang Bui, Charlie E Luoma, Xiaoming Zhang","doi":"10.1007/s10278-025-01673-6","DOIUrl":null,"url":null,"abstract":"<p><p>Lung ultrasound (LUS) has been widely used by point-of-care systems in both children and adult populations to provide different clinical diagnostics. This research aims to develop an interpretable system that uses a deep fusion network for classifying LUS video/patients based on extracted features by using texture analysis and transfer learning techniques to assist physicians. The pulmonary edema dataset includes 56 LUS videos and 4234 LUS frames. The COVID-BLUES dataset includes 294 LUS videos and 15,826 frames. The proposed multi-feature fusion classification network (MFFC-Net) includes the following: (1) two features extracted from Inception-ResNet-v2, Inception-v3, and 9 texture features of gray-level co-occurrence matrix (GLCM) and histogram of the region of interest (ROI); (2) a neural network for classifying LUS images with feature fusion input; and (3) four models (i.e., ANN, SVM, XGBoost, and kNN) used for classifying COVID/NON COVID patients. The training process was evaluated based on accuracy (0.9969), F1-score (0.9968), sensitivity (0.9967), specificity (0.9990), and precision (0.9970) metrics after the fivefold cross-validation stage. The results of the ANOVA analysis with 9 features of LUS images show that there was a significant difference between pulmonary edema and normal lungs (p < 0.01). The test results at the frame level of the MFFC-Net model achieved an accuracy of 100% and ROC-AUC (1.000) compared with ground truth at the video level with 4 groups of LUS videos. Test results at the patient level with the COVID-BLUES dataset achieved the highest accuracy of 81.25% with the kNN model. The proposed MFFC-Net model has 125 times higher information density (ID) compared to Inception-ResNet-v2 and 53.2 times compared with Inception-v3.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MFFC-Net: Multi-feature Fusion Deep Networks for Classifying Pulmonary Edema of a Pilot Study by Using Lung Ultrasound Image with Texture Analysis and Transfer Learning Technique.\",\"authors\":\"Ngoc Thang Bui, Charlie E Luoma, Xiaoming Zhang\",\"doi\":\"10.1007/s10278-025-01673-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung ultrasound (LUS) has been widely used by point-of-care systems in both children and adult populations to provide different clinical diagnostics. This research aims to develop an interpretable system that uses a deep fusion network for classifying LUS video/patients based on extracted features by using texture analysis and transfer learning techniques to assist physicians. The pulmonary edema dataset includes 56 LUS videos and 4234 LUS frames. The COVID-BLUES dataset includes 294 LUS videos and 15,826 frames. The proposed multi-feature fusion classification network (MFFC-Net) includes the following: (1) two features extracted from Inception-ResNet-v2, Inception-v3, and 9 texture features of gray-level co-occurrence matrix (GLCM) and histogram of the region of interest (ROI); (2) a neural network for classifying LUS images with feature fusion input; and (3) four models (i.e., ANN, SVM, XGBoost, and kNN) used for classifying COVID/NON COVID patients. The training process was evaluated based on accuracy (0.9969), F1-score (0.9968), sensitivity (0.9967), specificity (0.9990), and precision (0.9970) metrics after the fivefold cross-validation stage. The results of the ANOVA analysis with 9 features of LUS images show that there was a significant difference between pulmonary edema and normal lungs (p < 0.01). The test results at the frame level of the MFFC-Net model achieved an accuracy of 100% and ROC-AUC (1.000) compared with ground truth at the video level with 4 groups of LUS videos. Test results at the patient level with the COVID-BLUES dataset achieved the highest accuracy of 81.25% with the kNN model. The proposed MFFC-Net model has 125 times higher information density (ID) compared to Inception-ResNet-v2 and 53.2 times compared with Inception-v3.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01673-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01673-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肺超声(LUS)已广泛应用于儿童和成人人群的护理点系统,以提供不同的临床诊断。本研究旨在开发一个可解释的系统,该系统使用深度融合网络,通过纹理分析和迁移学习技术,基于提取的特征对LUS视频/患者进行分类,以协助医生。肺水肿数据集包括56个LUS视频和4234个LUS帧。COVID-BLUES数据集包括294个LUS视频和15,826帧。提出的多特征融合分类网络(MFFC-Net)包括:(1)从Inception-ResNet-v2、Inception-v3中提取两个特征,以及灰度共生矩阵(GLCM)和感兴趣区域(ROI)直方图的9个纹理特征;(2)基于特征融合输入的LUS图像分类神经网络;(3)采用ANN、SVM、XGBoost、kNN四种模型对COVID/NON - COVID患者进行分类。在五重交叉验证阶段后,根据准确性(0.9969)、f1评分(0.9968)、敏感性(0.9967)、特异性(0.9990)和精密度(0.9970)指标对训练过程进行评估。对LUS图像的9个特征进行方差分析的结果显示,肺水肿与正常肺有显著差异(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MFFC-Net: Multi-feature Fusion Deep Networks for Classifying Pulmonary Edema of a Pilot Study by Using Lung Ultrasound Image with Texture Analysis and Transfer Learning Technique.

Lung ultrasound (LUS) has been widely used by point-of-care systems in both children and adult populations to provide different clinical diagnostics. This research aims to develop an interpretable system that uses a deep fusion network for classifying LUS video/patients based on extracted features by using texture analysis and transfer learning techniques to assist physicians. The pulmonary edema dataset includes 56 LUS videos and 4234 LUS frames. The COVID-BLUES dataset includes 294 LUS videos and 15,826 frames. The proposed multi-feature fusion classification network (MFFC-Net) includes the following: (1) two features extracted from Inception-ResNet-v2, Inception-v3, and 9 texture features of gray-level co-occurrence matrix (GLCM) and histogram of the region of interest (ROI); (2) a neural network for classifying LUS images with feature fusion input; and (3) four models (i.e., ANN, SVM, XGBoost, and kNN) used for classifying COVID/NON COVID patients. The training process was evaluated based on accuracy (0.9969), F1-score (0.9968), sensitivity (0.9967), specificity (0.9990), and precision (0.9970) metrics after the fivefold cross-validation stage. The results of the ANOVA analysis with 9 features of LUS images show that there was a significant difference between pulmonary edema and normal lungs (p < 0.01). The test results at the frame level of the MFFC-Net model achieved an accuracy of 100% and ROC-AUC (1.000) compared with ground truth at the video level with 4 groups of LUS videos. Test results at the patient level with the COVID-BLUES dataset achieved the highest accuracy of 81.25% with the kNN model. The proposed MFFC-Net model has 125 times higher information density (ID) compared to Inception-ResNet-v2 and 53.2 times compared with Inception-v3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信