{"title":"低gpx4通过可靶向的适应性FSP1上调在TNBC中驱动持续的耐药持续状态。","authors":"Nazia Chaudhary , Dibita Mandal , Bhagya Shree Choudhary , Sushmita Patra , Darshan Jain , Pritam Poonia , Shagufa Shaikh , Siddhi Tekalkar , Shivani Malvankar , Anusha Shivashankar , Eeshrita Jog , Leena Pilankar , Rahul Thorat , Vaishali V. Kailje , Sonal Khanna , Subhakankha Manna , Bushra K. Khan , Anjana Jadhav , Kedar Sharma , Soundharya Ramu , Nandini Verma","doi":"10.1016/j.redox.2025.103864","DOIUrl":null,"url":null,"abstract":"<div><div>Metastatic relapses in Triple-Negative Breast Cancer (TNBC) patients with residual disease pose a significant clinical challenge. In this study, we longitudinally modelled cellular state transition from dormant drug-tolerant persister (DDTP) to proliferative (PDTP) cell state across TNBC subtypes. We identified specific molecular and phenotypic alterations that characterize the DTP states in TNBC cells that are maintained upon re-gaining proliferation. We found that Basal-Like proliferative DTPs stably acquired mesenchymal traits, while luminal androgen receptor-positive TNBC DTPs undergo partial Epithelial-to-Mesenchymal Transition (EMT). TNBC DTP cells exhibit reduced expression of glutathione peroxidase-4 (GPX4), conferring susceptibility to ferroptosis inducers. Mechanistically, GPX4 downregulation promotes EMT in TNBC, supported by an inverse correlation between GPX4 and EMT marker vimentin (VIM) expression that also serves as a predictor of survival in TNBC patients undergoing chemotherapy. The genetic, pharmacological, or chemotherapy-induced suppression of GPX4 in TNBC cells leads to robust upregulation of ferroptosis suppressor protein-1 (FSP1). The clinical significance of these findings is established by a strong predictive value of FSP1<sup>high</sup>/VIM<sup>high</sup> signature for worst survival and incomplete pathological response in chemotherapy-treated TNBC patients. Further, targeting FSP1 re-sensitizes cells to chemotherapy, while combined inhibition of FSP1 and GPX4 is selectively lethal in proliferative DTP TNBC cells by inducing ferroptosis.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"87 ","pages":"Article 103864"},"PeriodicalIF":11.9000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-GPX4 drives a sustained drug-tolerant persister state in TNBC by a targetable adaptive FSP1 upregulation\",\"authors\":\"Nazia Chaudhary , Dibita Mandal , Bhagya Shree Choudhary , Sushmita Patra , Darshan Jain , Pritam Poonia , Shagufa Shaikh , Siddhi Tekalkar , Shivani Malvankar , Anusha Shivashankar , Eeshrita Jog , Leena Pilankar , Rahul Thorat , Vaishali V. Kailje , Sonal Khanna , Subhakankha Manna , Bushra K. Khan , Anjana Jadhav , Kedar Sharma , Soundharya Ramu , Nandini Verma\",\"doi\":\"10.1016/j.redox.2025.103864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metastatic relapses in Triple-Negative Breast Cancer (TNBC) patients with residual disease pose a significant clinical challenge. In this study, we longitudinally modelled cellular state transition from dormant drug-tolerant persister (DDTP) to proliferative (PDTP) cell state across TNBC subtypes. We identified specific molecular and phenotypic alterations that characterize the DTP states in TNBC cells that are maintained upon re-gaining proliferation. We found that Basal-Like proliferative DTPs stably acquired mesenchymal traits, while luminal androgen receptor-positive TNBC DTPs undergo partial Epithelial-to-Mesenchymal Transition (EMT). TNBC DTP cells exhibit reduced expression of glutathione peroxidase-4 (GPX4), conferring susceptibility to ferroptosis inducers. Mechanistically, GPX4 downregulation promotes EMT in TNBC, supported by an inverse correlation between GPX4 and EMT marker vimentin (VIM) expression that also serves as a predictor of survival in TNBC patients undergoing chemotherapy. The genetic, pharmacological, or chemotherapy-induced suppression of GPX4 in TNBC cells leads to robust upregulation of ferroptosis suppressor protein-1 (FSP1). The clinical significance of these findings is established by a strong predictive value of FSP1<sup>high</sup>/VIM<sup>high</sup> signature for worst survival and incomplete pathological response in chemotherapy-treated TNBC patients. Further, targeting FSP1 re-sensitizes cells to chemotherapy, while combined inhibition of FSP1 and GPX4 is selectively lethal in proliferative DTP TNBC cells by inducing ferroptosis.</div></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"87 \",\"pages\":\"Article 103864\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231725003775\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725003775","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Low-GPX4 drives a sustained drug-tolerant persister state in TNBC by a targetable adaptive FSP1 upregulation
Metastatic relapses in Triple-Negative Breast Cancer (TNBC) patients with residual disease pose a significant clinical challenge. In this study, we longitudinally modelled cellular state transition from dormant drug-tolerant persister (DDTP) to proliferative (PDTP) cell state across TNBC subtypes. We identified specific molecular and phenotypic alterations that characterize the DTP states in TNBC cells that are maintained upon re-gaining proliferation. We found that Basal-Like proliferative DTPs stably acquired mesenchymal traits, while luminal androgen receptor-positive TNBC DTPs undergo partial Epithelial-to-Mesenchymal Transition (EMT). TNBC DTP cells exhibit reduced expression of glutathione peroxidase-4 (GPX4), conferring susceptibility to ferroptosis inducers. Mechanistically, GPX4 downregulation promotes EMT in TNBC, supported by an inverse correlation between GPX4 and EMT marker vimentin (VIM) expression that also serves as a predictor of survival in TNBC patients undergoing chemotherapy. The genetic, pharmacological, or chemotherapy-induced suppression of GPX4 in TNBC cells leads to robust upregulation of ferroptosis suppressor protein-1 (FSP1). The clinical significance of these findings is established by a strong predictive value of FSP1high/VIMhigh signature for worst survival and incomplete pathological response in chemotherapy-treated TNBC patients. Further, targeting FSP1 re-sensitizes cells to chemotherapy, while combined inhibition of FSP1 and GPX4 is selectively lethal in proliferative DTP TNBC cells by inducing ferroptosis.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.