Grant A Pellowe, Tomas B Voisin, Laura Karpauskaite, Sarah L Maslen, Alžběta Roeselová, J Mark Skehel, Chloe Roustan, Roger George, Andrea Nans, Svend Kjær, Ian A Taylor, David Balchin
{"title":"人类核糖体通过延迟共翻译结构域对接来调节多结构域蛋白的生物发生。","authors":"Grant A Pellowe, Tomas B Voisin, Laura Karpauskaite, Sarah L Maslen, Alžběta Roeselová, J Mark Skehel, Chloe Roustan, Roger George, Andrea Nans, Svend Kjær, Ian A Taylor, David Balchin","doi":"10.1038/s41594-025-01676-5","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins with multiple domains are intrinsically prone to misfold, yet fold efficiently during their synthesis on the ribosome. This is especially important in eukaryotes, where multidomain proteins predominate. Here we sought to understand how multidomain protein folding is modulated by the eukaryotic ribosome. We used hydrogen-deuterium exchange mass spectrometry and cryo-electron microscopy to characterize the structure and dynamics of partially synthesized intermediates of a model multidomain protein. We find that nascent subdomains fold progressively during synthesis on the human ribosome, templated by interactions across domain interfaces. The conformational ensemble of the nascent chain is tuned by its unstructured C-terminal segments, which keep interfaces between folded domains in dynamic equilibrium until translation termination. This contrasts with the bacterial ribosome, on which domain interfaces form early and remain stable during synthesis. Delayed domain docking may avoid interdomain misfolding to promote the maturation of multidomain proteins in eukaryotes.</p>","PeriodicalId":18836,"journal":{"name":"Nature Structural &Molecular Biology","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The human ribosome modulates multidomain protein biogenesis by delaying cotranslational domain docking.\",\"authors\":\"Grant A Pellowe, Tomas B Voisin, Laura Karpauskaite, Sarah L Maslen, Alžběta Roeselová, J Mark Skehel, Chloe Roustan, Roger George, Andrea Nans, Svend Kjær, Ian A Taylor, David Balchin\",\"doi\":\"10.1038/s41594-025-01676-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteins with multiple domains are intrinsically prone to misfold, yet fold efficiently during their synthesis on the ribosome. This is especially important in eukaryotes, where multidomain proteins predominate. Here we sought to understand how multidomain protein folding is modulated by the eukaryotic ribosome. We used hydrogen-deuterium exchange mass spectrometry and cryo-electron microscopy to characterize the structure and dynamics of partially synthesized intermediates of a model multidomain protein. We find that nascent subdomains fold progressively during synthesis on the human ribosome, templated by interactions across domain interfaces. The conformational ensemble of the nascent chain is tuned by its unstructured C-terminal segments, which keep interfaces between folded domains in dynamic equilibrium until translation termination. This contrasts with the bacterial ribosome, on which domain interfaces form early and remain stable during synthesis. Delayed domain docking may avoid interdomain misfolding to promote the maturation of multidomain proteins in eukaryotes.</p>\",\"PeriodicalId\":18836,\"journal\":{\"name\":\"Nature Structural &Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural &Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41594-025-01676-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural &Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01676-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The human ribosome modulates multidomain protein biogenesis by delaying cotranslational domain docking.
Proteins with multiple domains are intrinsically prone to misfold, yet fold efficiently during their synthesis on the ribosome. This is especially important in eukaryotes, where multidomain proteins predominate. Here we sought to understand how multidomain protein folding is modulated by the eukaryotic ribosome. We used hydrogen-deuterium exchange mass spectrometry and cryo-electron microscopy to characterize the structure and dynamics of partially synthesized intermediates of a model multidomain protein. We find that nascent subdomains fold progressively during synthesis on the human ribosome, templated by interactions across domain interfaces. The conformational ensemble of the nascent chain is tuned by its unstructured C-terminal segments, which keep interfaces between folded domains in dynamic equilibrium until translation termination. This contrasts with the bacterial ribosome, on which domain interfaces form early and remain stable during synthesis. Delayed domain docking may avoid interdomain misfolding to promote the maturation of multidomain proteins in eukaryotes.
期刊介绍:
Nature Structural & Molecular Biology is a monthly journal that focuses on the functional and mechanistic understanding of how molecular components in a biological process work together. It serves as an integrated forum for structural and molecular studies. The journal places a strong emphasis on the functional and mechanistic understanding of how molecular components in a biological process work together. Some specific areas of interest include the structure and function of proteins, nucleic acids, and other macromolecules, DNA replication, repair and recombination, transcription, regulation of transcription and translation, protein folding, processing and degradation, signal transduction, and intracellular signaling.