Kristina Auf dem Brinke, Lisa-Marie Borsch, Christian Klose, Jana Zschüntzsch, Liza Vinhoven, Manuel Nietert, Seyed Siyawasch Justus Lattau, Dirk Fitzner
{"title":"慢性炎症性脱髓鞘性多根神经病变(LIPID-CIDP)与疾病活动性相关的血浆脂质组学模式","authors":"Kristina Auf dem Brinke, Lisa-Marie Borsch, Christian Klose, Jana Zschüntzsch, Liza Vinhoven, Manuel Nietert, Seyed Siyawasch Justus Lattau, Dirk Fitzner","doi":"10.1016/j.jlr.2025.100903","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated neuropathy that causes significant disability in patients. Although pathogenic mechanisms remain unclear, it is known that inflammation results in segmental demyelination. This study aims to investigate the plasma lipidomic profile of CIDP patients to identify lipid patterns associated with disease activity. Using high-throughput shotgun lipidomics, we analyzed and compared the plasma lipidome of 30 patients with CIDP (mean age ± SD: 60.7 ± 12.2 years) with that of 30 individuals diagnosed with non-demyelinating neurological disorders (OND; mean age ± SD: 52.8 ± 10.3 years). Lipids were quantified in absolute [pmol] and relative concentrations [mol%], and their levels were correlated with CIDP disease activity and clinical disability scores (R-ODS, INCAT and MRC). To control for confounders such as age and weight, strongly correlated lipids were excluded. The analysis identified 669 molecular lipid species across 15 lipid classes, revealing a significant elevation in the diacylglycerol (DAG) class in CIDP patients. Furthermore, specific lipid subspecies, including triacylglycerol (TAG), DAG, and ether-linked phosphatidylcholine (PC O-), were significantly correlated with disease activity. A set of distinct lipid subspecies, including phosphatidylcholine (PC), lyso-phosphatidylcholine (LPC), phosphatidylinositol (PI), sphingomyelin (SM), and cholesterol ester (CE) showed strong associations with clinical disability scores. These findings suggest that CIDP is characterized by distinct lipidomic profiles modulated by disease activity. This dataset could pave the way for future studies in larger cohorts evaluating the potential of plasma lipid profiles to serve as biomarkers for disease activity and severity, aiding to inform clinical management.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100903"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma Lipidomic Patterns Associated with Disease Activity in Chronic Inflammatory Demyelinating Polyradiculoneuropathy (LIPID-CIDP).\",\"authors\":\"Kristina Auf dem Brinke, Lisa-Marie Borsch, Christian Klose, Jana Zschüntzsch, Liza Vinhoven, Manuel Nietert, Seyed Siyawasch Justus Lattau, Dirk Fitzner\",\"doi\":\"10.1016/j.jlr.2025.100903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated neuropathy that causes significant disability in patients. Although pathogenic mechanisms remain unclear, it is known that inflammation results in segmental demyelination. This study aims to investigate the plasma lipidomic profile of CIDP patients to identify lipid patterns associated with disease activity. Using high-throughput shotgun lipidomics, we analyzed and compared the plasma lipidome of 30 patients with CIDP (mean age ± SD: 60.7 ± 12.2 years) with that of 30 individuals diagnosed with non-demyelinating neurological disorders (OND; mean age ± SD: 52.8 ± 10.3 years). Lipids were quantified in absolute [pmol] and relative concentrations [mol%], and their levels were correlated with CIDP disease activity and clinical disability scores (R-ODS, INCAT and MRC). To control for confounders such as age and weight, strongly correlated lipids were excluded. The analysis identified 669 molecular lipid species across 15 lipid classes, revealing a significant elevation in the diacylglycerol (DAG) class in CIDP patients. Furthermore, specific lipid subspecies, including triacylglycerol (TAG), DAG, and ether-linked phosphatidylcholine (PC O-), were significantly correlated with disease activity. A set of distinct lipid subspecies, including phosphatidylcholine (PC), lyso-phosphatidylcholine (LPC), phosphatidylinositol (PI), sphingomyelin (SM), and cholesterol ester (CE) showed strong associations with clinical disability scores. These findings suggest that CIDP is characterized by distinct lipidomic profiles modulated by disease activity. This dataset could pave the way for future studies in larger cohorts evaluating the potential of plasma lipid profiles to serve as biomarkers for disease activity and severity, aiding to inform clinical management.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100903\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2025.100903\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100903","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Plasma Lipidomic Patterns Associated with Disease Activity in Chronic Inflammatory Demyelinating Polyradiculoneuropathy (LIPID-CIDP).
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated neuropathy that causes significant disability in patients. Although pathogenic mechanisms remain unclear, it is known that inflammation results in segmental demyelination. This study aims to investigate the plasma lipidomic profile of CIDP patients to identify lipid patterns associated with disease activity. Using high-throughput shotgun lipidomics, we analyzed and compared the plasma lipidome of 30 patients with CIDP (mean age ± SD: 60.7 ± 12.2 years) with that of 30 individuals diagnosed with non-demyelinating neurological disorders (OND; mean age ± SD: 52.8 ± 10.3 years). Lipids were quantified in absolute [pmol] and relative concentrations [mol%], and their levels were correlated with CIDP disease activity and clinical disability scores (R-ODS, INCAT and MRC). To control for confounders such as age and weight, strongly correlated lipids were excluded. The analysis identified 669 molecular lipid species across 15 lipid classes, revealing a significant elevation in the diacylglycerol (DAG) class in CIDP patients. Furthermore, specific lipid subspecies, including triacylglycerol (TAG), DAG, and ether-linked phosphatidylcholine (PC O-), were significantly correlated with disease activity. A set of distinct lipid subspecies, including phosphatidylcholine (PC), lyso-phosphatidylcholine (LPC), phosphatidylinositol (PI), sphingomyelin (SM), and cholesterol ester (CE) showed strong associations with clinical disability scores. These findings suggest that CIDP is characterized by distinct lipidomic profiles modulated by disease activity. This dataset could pave the way for future studies in larger cohorts evaluating the potential of plasma lipid profiles to serve as biomarkers for disease activity and severity, aiding to inform clinical management.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.