Yumian Yu , Guoheng Huang , Zhe Tan , Jiahui Shi , Ming Li , Chi-Man Pun , Fuchen Zheng , Shiqiang Ma , Shuqiang Wang , Long He
{"title":"MPCM-RRG:放射学报告生成的多模式快速协作机制。","authors":"Yumian Yu , Guoheng Huang , Zhe Tan , Jiahui Shi , Ming Li , Chi-Man Pun , Fuchen Zheng , Shiqiang Ma , Shuqiang Wang , Long He","doi":"10.1016/j.jbi.2025.104912","DOIUrl":null,"url":null,"abstract":"<div><div>The task of medical report generation involves automatically creating descriptive text reports from medical images, with the aim of alleviating the workload of physicians and enhancing diagnostic efficiency. However, although many existing medical report generation models based on the Transformer framework consider structural information in medical images, they ignore the interference of confounding factors on these structures, which limits the model’s ability to effectively capture rich and critical lesion information. Furthermore, these models often struggle to address the significant imbalance between normal and abnormal content in actual reports, leading to challenges in accurately describing abnormalities. To address these limitations, we propose the Multi-modal Prompt Collaboration Mechanism for Radiology Report Generation Model (MPCM-RRG). This model consists of three key components: the Visual Causal Prompting Module (VCP), the Textual Prompt-Guided Feature Enhancement Module (TPGF), and the Visual–Textual Semantic Consistency Module (VTSC). The VCP module uses chest X-ray masks as visual prompts and incorporates causal inference principles to help the model minimize the influence of irrelevant regions. Through causal intervention, the model can learn the causal relationships between the pathological regions in the image and the corresponding findings described in the report. The TPGF module tackles the imbalance between abnormal and normal text by integrating detailed textual prompts, which also guide the model to focus on lesion areas using a multi-head attention mechanism. The VTSC module promotes alignment between the visual and textual representations through contrastive consistency loss, fostering greater interaction and collaboration between the visual and textual prompts. Experimental results demonstrate that MPCM-RRG outperforms other methods on the IU X-ray and MIMIC-CXR datasets, highlighting its effectiveness in generating high-quality medical reports.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"170 ","pages":"Article 104912"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MPCM-RRG: Multi-modal Prompt Collaboration Mechanism for Radiology Report Generation\",\"authors\":\"Yumian Yu , Guoheng Huang , Zhe Tan , Jiahui Shi , Ming Li , Chi-Man Pun , Fuchen Zheng , Shiqiang Ma , Shuqiang Wang , Long He\",\"doi\":\"10.1016/j.jbi.2025.104912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The task of medical report generation involves automatically creating descriptive text reports from medical images, with the aim of alleviating the workload of physicians and enhancing diagnostic efficiency. However, although many existing medical report generation models based on the Transformer framework consider structural information in medical images, they ignore the interference of confounding factors on these structures, which limits the model’s ability to effectively capture rich and critical lesion information. Furthermore, these models often struggle to address the significant imbalance between normal and abnormal content in actual reports, leading to challenges in accurately describing abnormalities. To address these limitations, we propose the Multi-modal Prompt Collaboration Mechanism for Radiology Report Generation Model (MPCM-RRG). This model consists of three key components: the Visual Causal Prompting Module (VCP), the Textual Prompt-Guided Feature Enhancement Module (TPGF), and the Visual–Textual Semantic Consistency Module (VTSC). The VCP module uses chest X-ray masks as visual prompts and incorporates causal inference principles to help the model minimize the influence of irrelevant regions. Through causal intervention, the model can learn the causal relationships between the pathological regions in the image and the corresponding findings described in the report. The TPGF module tackles the imbalance between abnormal and normal text by integrating detailed textual prompts, which also guide the model to focus on lesion areas using a multi-head attention mechanism. The VTSC module promotes alignment between the visual and textual representations through contrastive consistency loss, fostering greater interaction and collaboration between the visual and textual prompts. Experimental results demonstrate that MPCM-RRG outperforms other methods on the IU X-ray and MIMIC-CXR datasets, highlighting its effectiveness in generating high-quality medical reports.</div></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"170 \",\"pages\":\"Article 104912\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046425001418\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425001418","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
MPCM-RRG: Multi-modal Prompt Collaboration Mechanism for Radiology Report Generation
The task of medical report generation involves automatically creating descriptive text reports from medical images, with the aim of alleviating the workload of physicians and enhancing diagnostic efficiency. However, although many existing medical report generation models based on the Transformer framework consider structural information in medical images, they ignore the interference of confounding factors on these structures, which limits the model’s ability to effectively capture rich and critical lesion information. Furthermore, these models often struggle to address the significant imbalance between normal and abnormal content in actual reports, leading to challenges in accurately describing abnormalities. To address these limitations, we propose the Multi-modal Prompt Collaboration Mechanism for Radiology Report Generation Model (MPCM-RRG). This model consists of three key components: the Visual Causal Prompting Module (VCP), the Textual Prompt-Guided Feature Enhancement Module (TPGF), and the Visual–Textual Semantic Consistency Module (VTSC). The VCP module uses chest X-ray masks as visual prompts and incorporates causal inference principles to help the model minimize the influence of irrelevant regions. Through causal intervention, the model can learn the causal relationships between the pathological regions in the image and the corresponding findings described in the report. The TPGF module tackles the imbalance between abnormal and normal text by integrating detailed textual prompts, which also guide the model to focus on lesion areas using a multi-head attention mechanism. The VTSC module promotes alignment between the visual and textual representations through contrastive consistency loss, fostering greater interaction and collaboration between the visual and textual prompts. Experimental results demonstrate that MPCM-RRG outperforms other methods on the IU X-ray and MIMIC-CXR datasets, highlighting its effectiveness in generating high-quality medical reports.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.