褐家鼠乳腺癌易感性1b (Mcs1b)指定变异的鉴定及功能分析。

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jennifer Sanders, Theodore S Kalbfleisch, Sasha Le, Xin Xu, Timothy D Cummins, David W Powell, David J Samuelson
{"title":"褐家鼠乳腺癌易感性1b (Mcs1b)指定变异的鉴定及功能分析。","authors":"Jennifer Sanders, Theodore S Kalbfleisch, Sasha Le, Xin Xu, Timothy D Cummins, David W Powell, David J Samuelson","doi":"10.1007/s00335-025-10157-5","DOIUrl":null,"url":null,"abstract":"<p><p>Rattus norvegicus (a.k.a. laboratory rat or Brown Rat) Mammary carcinoma susceptibility 1b (Mcs1b) is a concordant ortholog of a female breast cancer risk allele at human 5q11.2. Previously, Mcs1b was delimited to a 1.8 Mb interval of RNO2 and Map3k1 along with Mier3 were determined to be Mcs1b-nonminated genes. This conclusion was based on shared synteny with human 5q11.2 and differential gene expression between cancer susceptible and Mcs1b resistant mammary glands. In this study, targeted genome sequencing of cancer susceptible and Mcs1b resistance associated alleles was used to identify three Mcs1b-nominated quantitative trait nucleotides (QTNs) in noncoding DNA. In vitro approaches, luciferase activity and electromobility shift assays, were used to suggest these variants reside in potential gene regulatory elements. One of these variants, UL-A74-SNV-17, resulted in luciferase activities that were 2.6× higher for the susceptibility associated variant compared to the resistance associated variant. These results recapitulated Mcs1b nominated gene transcript level differences between Mcs1b genotypes in mammary epithelial cells (MECs), where Map3k1 and Mier3 were 1.5- to 2.0-fold higher for the susceptible genotype compared to the Mcs1b resistance-associated genotype. Evidence of a chromatin loop in Mcs1b that may position Mcs1b QTNs near distal genes was uncovered using chromosome confirmation capture (3C). Rat Mcs1b was also functionally characterized by determining that Mcs1b genotype had effects on the amount of luminal MECs in adult mammary glands. In conclusion, UL-A74-SNV-17 is a priority candidate Mcs1b QTN with a hypothesized mechanistic role in the differential regulation of Mcs1b nominated genes, Mier3 and Map3k1.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and functional analysis of Rattus norvegicus Mammary carcinoma susceptibility 1b (Mcs1b) nominated variants.\",\"authors\":\"Jennifer Sanders, Theodore S Kalbfleisch, Sasha Le, Xin Xu, Timothy D Cummins, David W Powell, David J Samuelson\",\"doi\":\"10.1007/s00335-025-10157-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rattus norvegicus (a.k.a. laboratory rat or Brown Rat) Mammary carcinoma susceptibility 1b (Mcs1b) is a concordant ortholog of a female breast cancer risk allele at human 5q11.2. Previously, Mcs1b was delimited to a 1.8 Mb interval of RNO2 and Map3k1 along with Mier3 were determined to be Mcs1b-nonminated genes. This conclusion was based on shared synteny with human 5q11.2 and differential gene expression between cancer susceptible and Mcs1b resistant mammary glands. In this study, targeted genome sequencing of cancer susceptible and Mcs1b resistance associated alleles was used to identify three Mcs1b-nominated quantitative trait nucleotides (QTNs) in noncoding DNA. In vitro approaches, luciferase activity and electromobility shift assays, were used to suggest these variants reside in potential gene regulatory elements. One of these variants, UL-A74-SNV-17, resulted in luciferase activities that were 2.6× higher for the susceptibility associated variant compared to the resistance associated variant. These results recapitulated Mcs1b nominated gene transcript level differences between Mcs1b genotypes in mammary epithelial cells (MECs), where Map3k1 and Mier3 were 1.5- to 2.0-fold higher for the susceptible genotype compared to the Mcs1b resistance-associated genotype. Evidence of a chromatin loop in Mcs1b that may position Mcs1b QTNs near distal genes was uncovered using chromosome confirmation capture (3C). Rat Mcs1b was also functionally characterized by determining that Mcs1b genotype had effects on the amount of luminal MECs in adult mammary glands. In conclusion, UL-A74-SNV-17 is a priority candidate Mcs1b QTN with a hypothesized mechanistic role in the differential regulation of Mcs1b nominated genes, Mier3 and Map3k1.</p>\",\"PeriodicalId\":18259,\"journal\":{\"name\":\"Mammalian Genome\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mammalian Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00335-025-10157-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-025-10157-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

褐家鼠(又名实验室大鼠或褐鼠)乳腺癌易感性1b (Mcs1b)与人类5q11.2雌性乳腺癌风险等位基因同源。此前,Mcs1b被划分为RNO2的1.8 Mb间隔,Map3k1和Mier3被确定为Mcs1b非命名基因。这一结论是基于Mcs1b基因与人类5q11.2的共同同源性以及Mcs1b基因在癌症易感乳腺和Mcs1b耐药乳腺中的差异表达。本研究利用癌症易感基因和Mcs1b耐药相关等位基因的靶向基因组测序,在非编码DNA中鉴定了3个Mcs1b命名的数量性状核苷酸(QTNs)。体外方法,荧光素酶活性和电迁移转移测定,表明这些变异存在于潜在的基因调控元件中。其中一种变异UL-A74-SNV-17的荧光素酶活性比抗性相关变异高2.6倍。这些结果概括了乳腺上皮细胞(MECs)中Mcs1b基因型之间Mcs1b指定基因转录水平的差异,其中易感基因型的Map3k1和Mier3比Mcs1b耐药相关基因型高1.5- 2.0倍。利用染色体确认捕获(3C)发现了Mcs1b中可能将Mcs1b QTNs定位在远端基因附近的染色质环的证据。通过确定Mcs1b基因型对成年乳腺腔内mec数量的影响,对大鼠Mcs1b进行了功能表征。总之,UL-A74-SNV-17是Mcs1b的优先候选QTN,在Mcs1b提名基因Mier3和Map3k1的差异调控中具有假设的机制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and functional analysis of Rattus norvegicus Mammary carcinoma susceptibility 1b (Mcs1b) nominated variants.

Rattus norvegicus (a.k.a. laboratory rat or Brown Rat) Mammary carcinoma susceptibility 1b (Mcs1b) is a concordant ortholog of a female breast cancer risk allele at human 5q11.2. Previously, Mcs1b was delimited to a 1.8 Mb interval of RNO2 and Map3k1 along with Mier3 were determined to be Mcs1b-nonminated genes. This conclusion was based on shared synteny with human 5q11.2 and differential gene expression between cancer susceptible and Mcs1b resistant mammary glands. In this study, targeted genome sequencing of cancer susceptible and Mcs1b resistance associated alleles was used to identify three Mcs1b-nominated quantitative trait nucleotides (QTNs) in noncoding DNA. In vitro approaches, luciferase activity and electromobility shift assays, were used to suggest these variants reside in potential gene regulatory elements. One of these variants, UL-A74-SNV-17, resulted in luciferase activities that were 2.6× higher for the susceptibility associated variant compared to the resistance associated variant. These results recapitulated Mcs1b nominated gene transcript level differences between Mcs1b genotypes in mammary epithelial cells (MECs), where Map3k1 and Mier3 were 1.5- to 2.0-fold higher for the susceptible genotype compared to the Mcs1b resistance-associated genotype. Evidence of a chromatin loop in Mcs1b that may position Mcs1b QTNs near distal genes was uncovered using chromosome confirmation capture (3C). Rat Mcs1b was also functionally characterized by determining that Mcs1b genotype had effects on the amount of luminal MECs in adult mammary glands. In conclusion, UL-A74-SNV-17 is a priority candidate Mcs1b QTN with a hypothesized mechanistic role in the differential regulation of Mcs1b nominated genes, Mier3 and Map3k1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mammalian Genome
Mammalian Genome 生物-生化与分子生物学
CiteScore
4.00
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信