基于机器学习的自发性脑出血后静脉血栓栓塞预测。

IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY
Yuanyou Li , Rui Tian , Kejia Liu , Fatian Wu , Tianyu Feng , Yi Liu , Chao You , Rui Guo
{"title":"基于机器学习的自发性脑出血后静脉血栓栓塞预测。","authors":"Yuanyou Li ,&nbsp;Rui Tian ,&nbsp;Kejia Liu ,&nbsp;Fatian Wu ,&nbsp;Tianyu Feng ,&nbsp;Yi Liu ,&nbsp;Chao You ,&nbsp;Rui Guo","doi":"10.1016/j.clineuro.2025.109159","DOIUrl":null,"url":null,"abstract":"<div><div>This multicenter retrospective study aimed to develop and validate machine learning models for predicting venous thromboembolism (VTE) following spontaneous intracerebral hemorrhage (SICH). The analysis included 988 SICH patients (748 from West China Hospital for model development and 240 from Leshan People's Hospital for external validation), incorporating comprehensive clinical, radiological, and laboratory parameters. Five machine learning algorithms, including XGBoost, were evaluated using a 3:1 training-test split and external validation approach.</div></div><div><h3>Results</h3><div>demonstrated significantly higher VTE incidence in patients with greater anticoagulant exposure (p &lt; 0.05), intraventricular hemorrhage (68.75 % vs 51.32 %), and infratentorial involvement (17.19 % vs 7.6 %). VTE patients exhibited larger hematoma volumes (33.5 ± 7.2 vs 25.0 ± 6.8 mL), tachycardia (88.0 ± 14.2 vs 82.0 ± 12.1 bpm), lower Glasgow Coma Scale (GCS) scores (8.0 ± 3.1 vs 13.0 ± 2.8), and elevated inflammatory markers. External validation confirmed these findings, with older age, larger hematomas, and higher D-dimer levels in VTE cases. XGBoost achieved superior predictive performance (AUC: 0.87 training, 0.81 test, 0.80 validation), with SHapley Additive exPlanations (SHAP) analysis identifying D-dimer, hematoma volume, and neutrophil count as key predictors. Conclusion:‌ XGBoost outperforms conventional methods in predicting post-SICH VTE through multidimensional data integration, providing a robust tool for personalized risk stratification and clinical prevention strategies.</div></div>","PeriodicalId":10385,"journal":{"name":"Clinical Neurology and Neurosurgery","volume":"258 ","pages":"Article 109159"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of venous thromboembolism after spontaneous intracerebral hemorrhage based on machine learning\",\"authors\":\"Yuanyou Li ,&nbsp;Rui Tian ,&nbsp;Kejia Liu ,&nbsp;Fatian Wu ,&nbsp;Tianyu Feng ,&nbsp;Yi Liu ,&nbsp;Chao You ,&nbsp;Rui Guo\",\"doi\":\"10.1016/j.clineuro.2025.109159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This multicenter retrospective study aimed to develop and validate machine learning models for predicting venous thromboembolism (VTE) following spontaneous intracerebral hemorrhage (SICH). The analysis included 988 SICH patients (748 from West China Hospital for model development and 240 from Leshan People's Hospital for external validation), incorporating comprehensive clinical, radiological, and laboratory parameters. Five machine learning algorithms, including XGBoost, were evaluated using a 3:1 training-test split and external validation approach.</div></div><div><h3>Results</h3><div>demonstrated significantly higher VTE incidence in patients with greater anticoagulant exposure (p &lt; 0.05), intraventricular hemorrhage (68.75 % vs 51.32 %), and infratentorial involvement (17.19 % vs 7.6 %). VTE patients exhibited larger hematoma volumes (33.5 ± 7.2 vs 25.0 ± 6.8 mL), tachycardia (88.0 ± 14.2 vs 82.0 ± 12.1 bpm), lower Glasgow Coma Scale (GCS) scores (8.0 ± 3.1 vs 13.0 ± 2.8), and elevated inflammatory markers. External validation confirmed these findings, with older age, larger hematomas, and higher D-dimer levels in VTE cases. XGBoost achieved superior predictive performance (AUC: 0.87 training, 0.81 test, 0.80 validation), with SHapley Additive exPlanations (SHAP) analysis identifying D-dimer, hematoma volume, and neutrophil count as key predictors. Conclusion:‌ XGBoost outperforms conventional methods in predicting post-SICH VTE through multidimensional data integration, providing a robust tool for personalized risk stratification and clinical prevention strategies.</div></div>\",\"PeriodicalId\":10385,\"journal\":{\"name\":\"Clinical Neurology and Neurosurgery\",\"volume\":\"258 \",\"pages\":\"Article 109159\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Neurology and Neurosurgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303846725004421\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurology and Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303846725004421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

这项多中心回顾性研究旨在开发和验证用于预测自发性脑出血(SICH)后静脉血栓栓塞(VTE)的机器学习模型。分析纳入988例脑出血患者(748例来自华西医院进行模型开发,240例来自乐山人民医院进行外部验证),纳入综合临床、放射学和实验室参数。包括XGBoost在内的五种机器学习算法使用3:1的训练-测试分割和外部验证方法进行评估。结果:抗凝剂暴露程度越高的患者静脉血栓栓塞发生率越高(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of venous thromboembolism after spontaneous intracerebral hemorrhage based on machine learning
This multicenter retrospective study aimed to develop and validate machine learning models for predicting venous thromboembolism (VTE) following spontaneous intracerebral hemorrhage (SICH). The analysis included 988 SICH patients (748 from West China Hospital for model development and 240 from Leshan People's Hospital for external validation), incorporating comprehensive clinical, radiological, and laboratory parameters. Five machine learning algorithms, including XGBoost, were evaluated using a 3:1 training-test split and external validation approach.

Results

demonstrated significantly higher VTE incidence in patients with greater anticoagulant exposure (p < 0.05), intraventricular hemorrhage (68.75 % vs 51.32 %), and infratentorial involvement (17.19 % vs 7.6 %). VTE patients exhibited larger hematoma volumes (33.5 ± 7.2 vs 25.0 ± 6.8 mL), tachycardia (88.0 ± 14.2 vs 82.0 ± 12.1 bpm), lower Glasgow Coma Scale (GCS) scores (8.0 ± 3.1 vs 13.0 ± 2.8), and elevated inflammatory markers. External validation confirmed these findings, with older age, larger hematomas, and higher D-dimer levels in VTE cases. XGBoost achieved superior predictive performance (AUC: 0.87 training, 0.81 test, 0.80 validation), with SHapley Additive exPlanations (SHAP) analysis identifying D-dimer, hematoma volume, and neutrophil count as key predictors. Conclusion:‌ XGBoost outperforms conventional methods in predicting post-SICH VTE through multidimensional data integration, providing a robust tool for personalized risk stratification and clinical prevention strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Neurology and Neurosurgery
Clinical Neurology and Neurosurgery 医学-临床神经学
CiteScore
3.70
自引率
5.30%
发文量
358
审稿时长
46 days
期刊介绍: Clinical Neurology and Neurosurgery is devoted to publishing papers and reports on the clinical aspects of neurology and neurosurgery. It is an international forum for papers of high scientific standard that are of interest to Neurologists and Neurosurgeons world-wide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信