对数Besov空间的点向乘子空间:端点情况下的对偶原理和傅里叶解析表征

IF 1.6 3区 数学 Q1 MATHEMATICS
Ziwei Li, Dachun Yang, Wen Yuan
{"title":"对数Besov空间的点向乘子空间:端点情况下的对偶原理和傅里叶解析表征","authors":"Ziwei Li,&nbsp;Dachun Yang,&nbsp;Wen Yuan","doi":"10.1007/s13324-025-01129-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(s,b\\in \\mathbb {R}\\)</span>. This article is devoted to establishing the Fourier-analytical characterization of the pointwise multiplier space <span>\\(M(B^{s,b}_{p,q}(\\mathbb {R}^n))\\)</span> for the logarithmic Besov space <span>\\(B^{s,b}_{p,q}(\\mathbb {R}^n)\\)</span> in the endpoint cases, that is, <span>\\(p,q\\in \\{1,\\infty \\}\\)</span>. The authors first obtain such a characterization for the cases where <span>\\(p=1\\)</span> and <span>\\(q=\\infty \\)</span> and where <span>\\(p=\\infty \\)</span> and <span>\\(q=1\\)</span>. Applying this, the authors then establish the duality formula <span>\\(M(B^{s,b}_{p,q}(\\mathbb {R}^n))=M(B^{-s,-b}_{p',q'}(\\mathbb {R}^n)),\\)</span> where <span>\\(s,b\\in \\mathbb {R}\\)</span>, <span>\\(p,q\\in [1,\\infty ]\\)</span>, and <span>\\(p'\\)</span> and <span>\\(q'\\)</span> are respectively the conjugate indices of <i>p</i> and <i>q</i>. This duality principle is further applied to establish the Fourier-analytical characterization of <span>\\(M(B^{s,b}_{p,q}(\\mathbb {R}^n))\\)</span> in the cases where <span>\\(p=\\infty =q\\)</span> and where <span>\\(p=1=q\\)</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pointwise Multiplier Spaces of Logarithmic Besov Spaces: Duality Principle and Fourier-Analytical Characterization in Endpoint Cases\",\"authors\":\"Ziwei Li,&nbsp;Dachun Yang,&nbsp;Wen Yuan\",\"doi\":\"10.1007/s13324-025-01129-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(s,b\\\\in \\\\mathbb {R}\\\\)</span>. This article is devoted to establishing the Fourier-analytical characterization of the pointwise multiplier space <span>\\\\(M(B^{s,b}_{p,q}(\\\\mathbb {R}^n))\\\\)</span> for the logarithmic Besov space <span>\\\\(B^{s,b}_{p,q}(\\\\mathbb {R}^n)\\\\)</span> in the endpoint cases, that is, <span>\\\\(p,q\\\\in \\\\{1,\\\\infty \\\\}\\\\)</span>. The authors first obtain such a characterization for the cases where <span>\\\\(p=1\\\\)</span> and <span>\\\\(q=\\\\infty \\\\)</span> and where <span>\\\\(p=\\\\infty \\\\)</span> and <span>\\\\(q=1\\\\)</span>. Applying this, the authors then establish the duality formula <span>\\\\(M(B^{s,b}_{p,q}(\\\\mathbb {R}^n))=M(B^{-s,-b}_{p',q'}(\\\\mathbb {R}^n)),\\\\)</span> where <span>\\\\(s,b\\\\in \\\\mathbb {R}\\\\)</span>, <span>\\\\(p,q\\\\in [1,\\\\infty ]\\\\)</span>, and <span>\\\\(p'\\\\)</span> and <span>\\\\(q'\\\\)</span> are respectively the conjugate indices of <i>p</i> and <i>q</i>. This duality principle is further applied to establish the Fourier-analytical characterization of <span>\\\\(M(B^{s,b}_{p,q}(\\\\mathbb {R}^n))\\\\)</span> in the cases where <span>\\\\(p=\\\\infty =q\\\\)</span> and where <span>\\\\(p=1=q\\\\)</span>.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01129-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01129-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让\(s,b\in \mathbb {R}\)。本文致力于建立端点情况下对数Besov空间\(B^{s,b}_{p,q}(\mathbb {R}^n)\)的点乘子空间\(M(B^{s,b}_{p,q}(\mathbb {R}^n))\)的傅里叶解析表征,即\(p,q\in \{1,\infty \}\)。作者首先对\(p=1\)和\(q=\infty \)以及\(p=\infty \)和\(q=1\)的情况获得了这样的特征。应用这一点,作者建立了对偶公式\(M(B^{s,b}_{p,q}(\mathbb {R}^n))=M(B^{-s,-b}_{p',q'}(\mathbb {R}^n)),\),其中\(s,b\in \mathbb {R}\), \(p,q\in [1,\infty ]\), \(p'\)和\(q'\)分别是p和q的共轭指标。这一对偶原理进一步应用于建立\(M(B^{s,b}_{p,q}(\mathbb {R}^n))\)在\(p=\infty =q\)和\(p=1=q\)情况下的傅里叶解析表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pointwise Multiplier Spaces of Logarithmic Besov Spaces: Duality Principle and Fourier-Analytical Characterization in Endpoint Cases

Let \(s,b\in \mathbb {R}\). This article is devoted to establishing the Fourier-analytical characterization of the pointwise multiplier space \(M(B^{s,b}_{p,q}(\mathbb {R}^n))\) for the logarithmic Besov space \(B^{s,b}_{p,q}(\mathbb {R}^n)\) in the endpoint cases, that is, \(p,q\in \{1,\infty \}\). The authors first obtain such a characterization for the cases where \(p=1\) and \(q=\infty \) and where \(p=\infty \) and \(q=1\). Applying this, the authors then establish the duality formula \(M(B^{s,b}_{p,q}(\mathbb {R}^n))=M(B^{-s,-b}_{p',q'}(\mathbb {R}^n)),\) where \(s,b\in \mathbb {R}\), \(p,q\in [1,\infty ]\), and \(p'\) and \(q'\) are respectively the conjugate indices of p and q. This duality principle is further applied to establish the Fourier-analytical characterization of \(M(B^{s,b}_{p,q}(\mathbb {R}^n))\) in the cases where \(p=\infty =q\) and where \(p=1=q\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信