Siyuan Ding;Xun Wang;Deshan Feng;Cheng Chen;Dianbo Li
{"title":"三维极化GPR数据对全波形反演的潜在影响","authors":"Siyuan Ding;Xun Wang;Deshan Feng;Cheng Chen;Dianbo Li","doi":"10.1109/LGRS.2025.3605792","DOIUrl":null,"url":null,"abstract":"Ground penetrating radar (GPR) is a powerful tool for exploring the shallow subsurface due to its effective and noninvasive features. Recently, the accurate and high-resolution characterization of subsurface properties in 3-D GPR investigations calls for a quantitative and high-resolution imaging approach. However, the full-waveform inversion (FWI) method for GPR data was performed mostly in 2-D and rarely discussed the polarizations. To fully utilize 3-D GPR polarization data, this letter proposes a frequency-domain FWI algorithm for simultaneous inversion of both the co-polarized and cross-polarized data. Detail derivations and vital processes in our inversion workflow were described in detail, before applying it to the numerical experiments and analyzing the potential impacts of the polarizations on inversion results with a synthetic model. Results showed that the cross-polarized data are more sensitive than the co-polarized data in inversion, and the behaviors in the inversion of the multipolarized data with different values in the weighting matrix suggest that larger weights for co-polarized data are of benefit to a better inversion result.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential Impacts of 3-D Polarized GPR Data on Full-Waveform Inversion\",\"authors\":\"Siyuan Ding;Xun Wang;Deshan Feng;Cheng Chen;Dianbo Li\",\"doi\":\"10.1109/LGRS.2025.3605792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ground penetrating radar (GPR) is a powerful tool for exploring the shallow subsurface due to its effective and noninvasive features. Recently, the accurate and high-resolution characterization of subsurface properties in 3-D GPR investigations calls for a quantitative and high-resolution imaging approach. However, the full-waveform inversion (FWI) method for GPR data was performed mostly in 2-D and rarely discussed the polarizations. To fully utilize 3-D GPR polarization data, this letter proposes a frequency-domain FWI algorithm for simultaneous inversion of both the co-polarized and cross-polarized data. Detail derivations and vital processes in our inversion workflow were described in detail, before applying it to the numerical experiments and analyzing the potential impacts of the polarizations on inversion results with a synthetic model. Results showed that the cross-polarized data are more sensitive than the co-polarized data in inversion, and the behaviors in the inversion of the multipolarized data with different values in the weighting matrix suggest that larger weights for co-polarized data are of benefit to a better inversion result.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11148270/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11148270/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Potential Impacts of 3-D Polarized GPR Data on Full-Waveform Inversion
Ground penetrating radar (GPR) is a powerful tool for exploring the shallow subsurface due to its effective and noninvasive features. Recently, the accurate and high-resolution characterization of subsurface properties in 3-D GPR investigations calls for a quantitative and high-resolution imaging approach. However, the full-waveform inversion (FWI) method for GPR data was performed mostly in 2-D and rarely discussed the polarizations. To fully utilize 3-D GPR polarization data, this letter proposes a frequency-domain FWI algorithm for simultaneous inversion of both the co-polarized and cross-polarized data. Detail derivations and vital processes in our inversion workflow were described in detail, before applying it to the numerical experiments and analyzing the potential impacts of the polarizations on inversion results with a synthetic model. Results showed that the cross-polarized data are more sensitive than the co-polarized data in inversion, and the behaviors in the inversion of the multipolarized data with different values in the weighting matrix suggest that larger weights for co-polarized data are of benefit to a better inversion result.