随机波束形成一阶信号协方差投影的压缩无线电干涉传感

IF 4.8 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Olivier Leblanc;Yves Wiaux;Laurent Jacques
{"title":"随机波束形成一阶信号协方差投影的压缩无线电干涉传感","authors":"Olivier Leblanc;Yves Wiaux;Laurent Jacques","doi":"10.1109/TCI.2025.3587449","DOIUrl":null,"url":null,"abstract":"Radio-interferometry (RI) observes the sky at unprecedented angular resolutions, enabling the study of several far-away galactic objects such as galaxies and black holes. In RI, an array of antennas probes cosmic signals coming from the observed region of the sky. The covariance matrix of the vector gathering all these antenna measurements offers, by leveraging the Van Cittert-Zernike theorem, an incomplete and noisy Fourier sensing of the image of interest. The number of noisy Fourier measurements—or <italic>visibilities</i>—scales as <inline-formula><tex-math>$\\mathcal O(Q^{2}B)$</tex-math></inline-formula> for <inline-formula><tex-math>$Q$</tex-math></inline-formula> antennas and <inline-formula><tex-math>$B$</tex-math></inline-formula> short-time integration (STI) intervals. We address the challenges posed by this vast volume of data, which is anticipated to increase significantly with the advent of large antenna arrays, by proposing a compressive sensing technique applied directly at the level of the antenna measurements. First, this paper shows that <italic>beamforming</i>—a common technique of dephasing antenna signals—usually used to focus some region of the sky, is equivalent to sensing a rank-one projection (ROP) of the signal covariance matrix. We build upon our recent work (Leblanc et al., 2024) to propose a compressive sensing scheme relying on random beamforming, trading the <inline-formula><tex-math>$Q^{2}$</tex-math></inline-formula>-dependence of the data size for a smaller number <inline-formula><tex-math>$P$</tex-math></inline-formula> of ROPs. We provide image recovery guarantees for sparse image reconstruction. Secondly, the data size is made independent of <inline-formula><tex-math>$B$</tex-math></inline-formula> by applying <inline-formula><tex-math>$M$</tex-math></inline-formula> random modulations of the ROP vectors obtained for the STI. The resulting sample complexities, theoretically derived in a simpler case without modulations and numerically obtained in phase transition diagrams, are shown to scale as <inline-formula><tex-math>$\\mathcal O(K)$</tex-math></inline-formula> where <inline-formula><tex-math>$K$</tex-math></inline-formula> is the image sparsity. This illustrates the potential of the approach.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"1229-1242"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressive Radio-Interferometric Sensing With Random Beamforming as Rank-One Signal Covariance Projections\",\"authors\":\"Olivier Leblanc;Yves Wiaux;Laurent Jacques\",\"doi\":\"10.1109/TCI.2025.3587449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio-interferometry (RI) observes the sky at unprecedented angular resolutions, enabling the study of several far-away galactic objects such as galaxies and black holes. In RI, an array of antennas probes cosmic signals coming from the observed region of the sky. The covariance matrix of the vector gathering all these antenna measurements offers, by leveraging the Van Cittert-Zernike theorem, an incomplete and noisy Fourier sensing of the image of interest. The number of noisy Fourier measurements—or <italic>visibilities</i>—scales as <inline-formula><tex-math>$\\\\mathcal O(Q^{2}B)$</tex-math></inline-formula> for <inline-formula><tex-math>$Q$</tex-math></inline-formula> antennas and <inline-formula><tex-math>$B$</tex-math></inline-formula> short-time integration (STI) intervals. We address the challenges posed by this vast volume of data, which is anticipated to increase significantly with the advent of large antenna arrays, by proposing a compressive sensing technique applied directly at the level of the antenna measurements. First, this paper shows that <italic>beamforming</i>—a common technique of dephasing antenna signals—usually used to focus some region of the sky, is equivalent to sensing a rank-one projection (ROP) of the signal covariance matrix. We build upon our recent work (Leblanc et al., 2024) to propose a compressive sensing scheme relying on random beamforming, trading the <inline-formula><tex-math>$Q^{2}$</tex-math></inline-formula>-dependence of the data size for a smaller number <inline-formula><tex-math>$P$</tex-math></inline-formula> of ROPs. We provide image recovery guarantees for sparse image reconstruction. Secondly, the data size is made independent of <inline-formula><tex-math>$B$</tex-math></inline-formula> by applying <inline-formula><tex-math>$M$</tex-math></inline-formula> random modulations of the ROP vectors obtained for the STI. The resulting sample complexities, theoretically derived in a simpler case without modulations and numerically obtained in phase transition diagrams, are shown to scale as <inline-formula><tex-math>$\\\\mathcal O(K)$</tex-math></inline-formula> where <inline-formula><tex-math>$K$</tex-math></inline-formula> is the image sparsity. This illustrates the potential of the approach.\",\"PeriodicalId\":56022,\"journal\":{\"name\":\"IEEE Transactions on Computational Imaging\",\"volume\":\"11 \",\"pages\":\"1229-1242\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11087715/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11087715/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

无线电干涉测量(RI)以前所未有的角度分辨率观察天空,使研究几个遥远的星系物体,如星系和黑洞成为可能。在RI中,一组天线探测来自天空观测区域的宇宙信号。通过利用Van Cittert-Zernike定理,收集所有这些天线测量值的矢量的协方差矩阵提供了感兴趣图像的不完整和有噪声的傅立叶感测。对于$Q$天线和$B$短时积分(STI)间隔,有噪声的傅立叶测量(或可见度)的数量按$ $数学O(Q^{2}B)$缩放。我们通过提出一种直接应用于天线测量水平的压缩感知技术,解决了这一巨大数据量带来的挑战,预计随着大型天线阵列的出现,这一数据量将显著增加。首先,本文表明波束形成——一种常见的天线信号去相技术——通常用于聚焦天空的某些区域,相当于感知信号协方差矩阵的一级投影(ROP)。基于我们最近的工作(Leblanc等人,2024),我们提出了一种依赖于随机波束形成的压缩感知方案,将数据大小的Q^{2}$依赖性转换为较小的rop $P$。为稀疏图像重建提供图像恢复保障。其次,通过对STI获得的ROP向量进行随机调制,使数据大小独立于$B$。由此产生的样本复杂性,理论上在没有调制的更简单的情况下推导出来,并在相变图中数值获得,显示为缩放为$\mathcal O(K)$,其中$K$是图像稀疏性。这说明了这种方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive Radio-Interferometric Sensing With Random Beamforming as Rank-One Signal Covariance Projections
Radio-interferometry (RI) observes the sky at unprecedented angular resolutions, enabling the study of several far-away galactic objects such as galaxies and black holes. In RI, an array of antennas probes cosmic signals coming from the observed region of the sky. The covariance matrix of the vector gathering all these antenna measurements offers, by leveraging the Van Cittert-Zernike theorem, an incomplete and noisy Fourier sensing of the image of interest. The number of noisy Fourier measurements—or visibilities—scales as $\mathcal O(Q^{2}B)$ for $Q$ antennas and $B$ short-time integration (STI) intervals. We address the challenges posed by this vast volume of data, which is anticipated to increase significantly with the advent of large antenna arrays, by proposing a compressive sensing technique applied directly at the level of the antenna measurements. First, this paper shows that beamforming—a common technique of dephasing antenna signals—usually used to focus some region of the sky, is equivalent to sensing a rank-one projection (ROP) of the signal covariance matrix. We build upon our recent work (Leblanc et al., 2024) to propose a compressive sensing scheme relying on random beamforming, trading the $Q^{2}$-dependence of the data size for a smaller number $P$ of ROPs. We provide image recovery guarantees for sparse image reconstruction. Secondly, the data size is made independent of $B$ by applying $M$ random modulations of the ROP vectors obtained for the STI. The resulting sample complexities, theoretically derived in a simpler case without modulations and numerically obtained in phase transition diagrams, are shown to scale as $\mathcal O(K)$ where $K$ is the image sparsity. This illustrates the potential of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信