tio2 (n = 1-10)簇的稳定性和反应性及其与CO2的相互作用

IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Letícia Carolaine Silva Faria, Letícia Marques de Souza Vetrano de Queiroz, Murielly Fernanda Ribeiro Bihain, Douglas Henrique Pereira, Leonardo Tsuyoshi Ueno, Francisco Bolivar Correto Machado, Luiz Fernando de Araujo Ferrão
{"title":"tio2 (n = 1-10)簇的稳定性和反应性及其与CO2的相互作用","authors":"Letícia Carolaine Silva Faria,&nbsp;Letícia Marques de Souza Vetrano de Queiroz,&nbsp;Murielly Fernanda Ribeiro Bihain,&nbsp;Douglas Henrique Pereira,&nbsp;Leonardo Tsuyoshi Ueno,&nbsp;Francisco Bolivar Correto Machado,&nbsp;Luiz Fernando de Araujo Ferrão","doi":"10.1002/jcc.70232","DOIUrl":null,"url":null,"abstract":"<p>Small titanium dioxide clusters <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mfenced>\n <msub>\n <mi>TiO</mi>\n <mn>2</mn>\n </msub>\n </mfenced>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$$ {\\left({\\mathrm{TiO}}_2\\right)}_n $$</annotation>\n </semantics></math> (with <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 1–10) are promising photocatalysts for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> conversion; however, their size-dependent stability and reactivity are not fully characterized. This study uses density functional theory (M06/def2-TZVP) and global and local reactivity descriptors to identify “magic number” clusters that exhibit high stability. The stability function (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>ε</mi>\n <mn>3</mn>\n </msup>\n </mrow>\n <annotation>$$ {\\varepsilon}^3 $$</annotation>\n </semantics></math>), reveals <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 2, 4, and 8 as magic numbers. Electrophilicity analysis (<span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>ω</mi>\n </mrow>\n <annotation>$$ \\Delta \\omega $$</annotation>\n </semantics></math>) shows moderate electrophilicity for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 1–5 and strong electrophilicity for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 7–10, while the magic numbers display reduced reactivity. Fukui functions and fractional occupation number-weighted density (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>FOD</mi>\n </msub>\n </mrow>\n <annotation>$$ {N}_{FOD} $$</annotation>\n </semantics></math>) highlight localized reactivity. Notably, they reveal <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 6 to be highly electrophilic, with distinct “hot” electron sites. <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> interaction energies inversely correlate with cluster stability: unstable clusters (<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 3, 5, and 9) strongly bind <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> (up to 0.72 eV), while magic numbers weakly physisorb it (e.g., 0.45 eV for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 8). Non-covalent interaction (NCI) analysis confirms Ti–OCO attraction and C-repulsive sites. Together, these results establish design principles for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TiO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{TiO}}_2 $$</annotation>\n </semantics></math> cluster catalysts that balance stability with tailored reactivity for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> activation.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 25","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70232","citationCount":"0","resultStr":"{\"title\":\"Stability and Reactivity of \\n \\n \\n \\n \\n \\n TiO\\n 2\\n \\n \\n n\\n \\n \\n $$ {\\\\left({\\\\mathrm{TiO}}_2\\\\right)}_n $$\\n , n = 1–10, Clusters and Their Interactions With \\n \\n \\n \\n CO\\n 2\\n \\n \\n $$ {\\\\mathrm{CO}}_2 $$\",\"authors\":\"Letícia Carolaine Silva Faria,&nbsp;Letícia Marques de Souza Vetrano de Queiroz,&nbsp;Murielly Fernanda Ribeiro Bihain,&nbsp;Douglas Henrique Pereira,&nbsp;Leonardo Tsuyoshi Ueno,&nbsp;Francisco Bolivar Correto Machado,&nbsp;Luiz Fernando de Araujo Ferrão\",\"doi\":\"10.1002/jcc.70232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Small titanium dioxide clusters <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mfenced>\\n <msub>\\n <mi>TiO</mi>\\n <mn>2</mn>\\n </msub>\\n </mfenced>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\left({\\\\mathrm{TiO}}_2\\\\right)}_n $$</annotation>\\n </semantics></math> (with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 1–10) are promising photocatalysts for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>CO</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math> conversion; however, their size-dependent stability and reactivity are not fully characterized. This study uses density functional theory (M06/def2-TZVP) and global and local reactivity descriptors to identify “magic number” clusters that exhibit high stability. The stability function (<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>ε</mi>\\n <mn>3</mn>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\varepsilon}^3 $$</annotation>\\n </semantics></math>), reveals <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 2, 4, and 8 as magic numbers. Electrophilicity analysis (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>ω</mi>\\n </mrow>\\n <annotation>$$ \\\\Delta \\\\omega $$</annotation>\\n </semantics></math>) shows moderate electrophilicity for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 1–5 and strong electrophilicity for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 7–10, while the magic numbers display reduced reactivity. Fukui functions and fractional occupation number-weighted density (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>FOD</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ {N}_{FOD} $$</annotation>\\n </semantics></math>) highlight localized reactivity. Notably, they reveal <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 6 to be highly electrophilic, with distinct “hot” electron sites. <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>CO</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math> interaction energies inversely correlate with cluster stability: unstable clusters (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 3, 5, and 9) strongly bind <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>CO</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math> (up to 0.72 eV), while magic numbers weakly physisorb it (e.g., 0.45 eV for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 8). Non-covalent interaction (NCI) analysis confirms Ti–OCO attraction and C-repulsive sites. Together, these results establish design principles for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TiO</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{TiO}}_2 $$</annotation>\\n </semantics></math> cluster catalysts that balance stability with tailored reactivity for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>CO</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math> activation.</p>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 25\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70232\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70232\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70232","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

小的二氧化钛团簇(TiO2)n $$ {\left({\mathrm{TiO}}_2\right)}_n $$ (n $$ n $$ = 1-10)是很有前途的CO2 $$ {\mathrm{CO}}_2 $$转化光催化剂;然而,它们的尺寸依赖性稳定性和反应性尚未完全表征。本研究使用密度泛函理论(M06/def2-TZVP)和全局和局部反应性描述符来识别具有高稳定性的“幻数”簇。稳定性函数(ε3 $$ {\varepsilon}^3 $$)显示n $$ n $$ = 2,4和8为幻数。亲电性分析(Δ¹ω $$ \Delta \omega $$)表明,n $$ n $$ = 1-5时亲电性中等,n $$ n $$ = 7-10时亲电性强,而魔术数显示反应性降低。福井函数和分数职业数加权密度(NFOD $$ {N}_{FOD} $$)强调局部反应性。值得注意的是,它们显示n $$ n $$ = 6具有高度亲电性,具有明显的“热”电子位。CO2 $$ {\mathrm{CO}}_2 $$相互作用能量与团簇稳定性呈负相关:不稳定的团簇(n $$ n $$ = 3,5和9)强烈地结合CO2 $$ {\mathrm{CO}}_2 $$(高达0.72 eV),而幻数则弱地物理吸收它(例如,n $$ n $$ = 8时,0.45 eV)。非共价相互作用(NCI)分析证实了Ti-OCO吸引位点和c -排斥位点。总之,这些结果建立了TiO2 $$ {\mathrm{TiO}}_2 $$团簇催化剂的设计原则,平衡了CO2 $$ {\mathrm{CO}}_2 $$活化的稳定性和定制反应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stability and Reactivity of 
         
            
               
                  
                     
                        TiO
                        2
                     
                  
                  n
               
            
            $$ {\left({\mathrm{TiO}}_2\right)}_n $$
         , n = 1–10, Clusters and Their Interactions With 
         
            
               
                  CO
                  2
               
            
            $$ {\mathrm{CO}}_2 $$

Stability and Reactivity of 
         
            
               
                  
                     
                        TiO
                        2
                     
                  
                  n
               
            
            $$ {\left({\mathrm{TiO}}_2\right)}_n $$
         , n = 1–10, Clusters and Their Interactions With 
         
            
               
                  CO
                  2
               
            
            $$ {\mathrm{CO}}_2 $$

Stability and Reactivity of TiO 2 n $$ {\left({\mathrm{TiO}}_2\right)}_n $$ , n = 1–10, Clusters and Their Interactions With CO 2 $$ {\mathrm{CO}}_2 $$

Small titanium dioxide clusters TiO 2 n $$ {\left({\mathrm{TiO}}_2\right)}_n $$ (with n $$ n $$ = 1–10) are promising photocatalysts for CO 2 $$ {\mathrm{CO}}_2 $$ conversion; however, their size-dependent stability and reactivity are not fully characterized. This study uses density functional theory (M06/def2-TZVP) and global and local reactivity descriptors to identify “magic number” clusters that exhibit high stability. The stability function ( ε 3 $$ {\varepsilon}^3 $$ ), reveals n $$ n $$ = 2, 4, and 8 as magic numbers. Electrophilicity analysis ( Δ ω $$ \Delta \omega $$ ) shows moderate electrophilicity for n $$ n $$ = 1–5 and strong electrophilicity for n $$ n $$ = 7–10, while the magic numbers display reduced reactivity. Fukui functions and fractional occupation number-weighted density ( N FOD $$ {N}_{FOD} $$ ) highlight localized reactivity. Notably, they reveal n $$ n $$ = 6 to be highly electrophilic, with distinct “hot” electron sites. CO 2 $$ {\mathrm{CO}}_2 $$ interaction energies inversely correlate with cluster stability: unstable clusters ( n $$ n $$ = 3, 5, and 9) strongly bind CO 2 $$ {\mathrm{CO}}_2 $$ (up to 0.72 eV), while magic numbers weakly physisorb it (e.g., 0.45 eV for n $$ n $$ = 8). Non-covalent interaction (NCI) analysis confirms Ti–OCO attraction and C-repulsive sites. Together, these results establish design principles for TiO 2 $$ {\mathrm{TiO}}_2 $$ cluster catalysts that balance stability with tailored reactivity for CO 2 $$ {\mathrm{CO}}_2 $$ activation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信