Letícia Carolaine Silva Faria, Letícia Marques de Souza Vetrano de Queiroz, Murielly Fernanda Ribeiro Bihain, Douglas Henrique Pereira, Leonardo Tsuyoshi Ueno, Francisco Bolivar Correto Machado, Luiz Fernando de Araujo Ferrão
{"title":"tio2 (n = 1-10)簇的稳定性和反应性及其与CO2的相互作用","authors":"Letícia Carolaine Silva Faria, Letícia Marques de Souza Vetrano de Queiroz, Murielly Fernanda Ribeiro Bihain, Douglas Henrique Pereira, Leonardo Tsuyoshi Ueno, Francisco Bolivar Correto Machado, Luiz Fernando de Araujo Ferrão","doi":"10.1002/jcc.70232","DOIUrl":null,"url":null,"abstract":"<p>Small titanium dioxide clusters <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mfenced>\n <msub>\n <mi>TiO</mi>\n <mn>2</mn>\n </msub>\n </mfenced>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$$ {\\left({\\mathrm{TiO}}_2\\right)}_n $$</annotation>\n </semantics></math> (with <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 1–10) are promising photocatalysts for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> conversion; however, their size-dependent stability and reactivity are not fully characterized. This study uses density functional theory (M06/def2-TZVP) and global and local reactivity descriptors to identify “magic number” clusters that exhibit high stability. The stability function (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>ε</mi>\n <mn>3</mn>\n </msup>\n </mrow>\n <annotation>$$ {\\varepsilon}^3 $$</annotation>\n </semantics></math>), reveals <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 2, 4, and 8 as magic numbers. Electrophilicity analysis (<span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>ω</mi>\n </mrow>\n <annotation>$$ \\Delta \\omega $$</annotation>\n </semantics></math>) shows moderate electrophilicity for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 1–5 and strong electrophilicity for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 7–10, while the magic numbers display reduced reactivity. Fukui functions and fractional occupation number-weighted density (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>FOD</mi>\n </msub>\n </mrow>\n <annotation>$$ {N}_{FOD} $$</annotation>\n </semantics></math>) highlight localized reactivity. Notably, they reveal <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 6 to be highly electrophilic, with distinct “hot” electron sites. <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> interaction energies inversely correlate with cluster stability: unstable clusters (<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 3, 5, and 9) strongly bind <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> (up to 0.72 eV), while magic numbers weakly physisorb it (e.g., 0.45 eV for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 8). Non-covalent interaction (NCI) analysis confirms Ti–OCO attraction and C-repulsive sites. Together, these results establish design principles for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TiO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{TiO}}_2 $$</annotation>\n </semantics></math> cluster catalysts that balance stability with tailored reactivity for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> activation.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 25","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70232","citationCount":"0","resultStr":"{\"title\":\"Stability and Reactivity of \\n \\n \\n \\n \\n \\n TiO\\n 2\\n \\n \\n n\\n \\n \\n $$ {\\\\left({\\\\mathrm{TiO}}_2\\\\right)}_n $$\\n , n = 1–10, Clusters and Their Interactions With \\n \\n \\n \\n CO\\n 2\\n \\n \\n $$ {\\\\mathrm{CO}}_2 $$\",\"authors\":\"Letícia Carolaine Silva Faria, Letícia Marques de Souza Vetrano de Queiroz, Murielly Fernanda Ribeiro Bihain, Douglas Henrique Pereira, Leonardo Tsuyoshi Ueno, Francisco Bolivar Correto Machado, Luiz Fernando de Araujo Ferrão\",\"doi\":\"10.1002/jcc.70232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Small titanium dioxide clusters <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mfenced>\\n <msub>\\n <mi>TiO</mi>\\n <mn>2</mn>\\n </msub>\\n </mfenced>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\left({\\\\mathrm{TiO}}_2\\\\right)}_n $$</annotation>\\n </semantics></math> (with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 1–10) are promising photocatalysts for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>CO</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math> conversion; however, their size-dependent stability and reactivity are not fully characterized. This study uses density functional theory (M06/def2-TZVP) and global and local reactivity descriptors to identify “magic number” clusters that exhibit high stability. The stability function (<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>ε</mi>\\n <mn>3</mn>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\varepsilon}^3 $$</annotation>\\n </semantics></math>), reveals <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 2, 4, and 8 as magic numbers. Electrophilicity analysis (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>ω</mi>\\n </mrow>\\n <annotation>$$ \\\\Delta \\\\omega $$</annotation>\\n </semantics></math>) shows moderate electrophilicity for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 1–5 and strong electrophilicity for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 7–10, while the magic numbers display reduced reactivity. Fukui functions and fractional occupation number-weighted density (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>FOD</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ {N}_{FOD} $$</annotation>\\n </semantics></math>) highlight localized reactivity. Notably, they reveal <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 6 to be highly electrophilic, with distinct “hot” electron sites. <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>CO</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math> interaction energies inversely correlate with cluster stability: unstable clusters (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 3, 5, and 9) strongly bind <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>CO</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math> (up to 0.72 eV), while magic numbers weakly physisorb it (e.g., 0.45 eV for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> = 8). Non-covalent interaction (NCI) analysis confirms Ti–OCO attraction and C-repulsive sites. Together, these results establish design principles for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TiO</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{TiO}}_2 $$</annotation>\\n </semantics></math> cluster catalysts that balance stability with tailored reactivity for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>CO</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math> activation.</p>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 25\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70232\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70232\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70232","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
小的二氧化钛团簇(TiO2)n $$ {\left({\mathrm{TiO}}_2\right)}_n $$ (n $$ n $$ = 1-10)是很有前途的CO2 $$ {\mathrm{CO}}_2 $$转化光催化剂;然而,它们的尺寸依赖性稳定性和反应性尚未完全表征。本研究使用密度泛函理论(M06/def2-TZVP)和全局和局部反应性描述符来识别具有高稳定性的“幻数”簇。稳定性函数(ε3 $$ {\varepsilon}^3 $$)显示n $$ n $$ = 2,4和8为幻数。亲电性分析(Δ¹ω $$ \Delta \omega $$)表明,n $$ n $$ = 1-5时亲电性中等,n $$ n $$ = 7-10时亲电性强,而魔术数显示反应性降低。福井函数和分数职业数加权密度(NFOD $$ {N}_{FOD} $$)强调局部反应性。值得注意的是,它们显示n $$ n $$ = 6具有高度亲电性,具有明显的“热”电子位。CO2 $$ {\mathrm{CO}}_2 $$相互作用能量与团簇稳定性呈负相关:不稳定的团簇(n $$ n $$ = 3,5和9)强烈地结合CO2 $$ {\mathrm{CO}}_2 $$(高达0.72 eV),而幻数则弱地物理吸收它(例如,n $$ n $$ = 8时,0.45 eV)。非共价相互作用(NCI)分析证实了Ti-OCO吸引位点和c -排斥位点。总之,这些结果建立了TiO2 $$ {\mathrm{TiO}}_2 $$团簇催化剂的设计原则,平衡了CO2 $$ {\mathrm{CO}}_2 $$活化的稳定性和定制反应性。
Stability and Reactivity of
TiO
2
n
$$ {\left({\mathrm{TiO}}_2\right)}_n $$
, n = 1–10, Clusters and Their Interactions With
CO
2
$$ {\mathrm{CO}}_2 $$
Small titanium dioxide clusters (with = 1–10) are promising photocatalysts for conversion; however, their size-dependent stability and reactivity are not fully characterized. This study uses density functional theory (M06/def2-TZVP) and global and local reactivity descriptors to identify “magic number” clusters that exhibit high stability. The stability function (), reveals = 2, 4, and 8 as magic numbers. Electrophilicity analysis () shows moderate electrophilicity for = 1–5 and strong electrophilicity for = 7–10, while the magic numbers display reduced reactivity. Fukui functions and fractional occupation number-weighted density () highlight localized reactivity. Notably, they reveal = 6 to be highly electrophilic, with distinct “hot” electron sites. interaction energies inversely correlate with cluster stability: unstable clusters ( = 3, 5, and 9) strongly bind (up to 0.72 eV), while magic numbers weakly physisorb it (e.g., 0.45 eV for = 8). Non-covalent interaction (NCI) analysis confirms Ti–OCO attraction and C-repulsive sites. Together, these results establish design principles for cluster catalysts that balance stability with tailored reactivity for activation.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.