Lukas Brenner, Libor Caha, Xavier Coiteux-Roy, Robert Koenig
{"title":"Gottesman-Kitaev-Preskill状态的复杂性","authors":"Lukas Brenner, Libor Caha, Xavier Coiteux-Roy, Robert Koenig","doi":"10.1103/4ww5-4yww","DOIUrl":null,"url":null,"abstract":"We initiate the study of state complexity for continuous-variable quantum systems. Concretely, we consider a setup with bosonic modes and auxiliary qubits, where available operations include Gaussian one- and two-mode operations and single- and two-qubit operations as well as qubit-controlled phase-space displacements. We define the (approximate) complexity of a bosonic state by the minimum size of a circuit that prepares an approximation to the state in trace distance. We propose a new circuit which prepares an approximate Gottesman-Kitaev-Preskill (GKP) state |</a:mo>G</a:mi>K</a:mi>P</a:mi></a:mrow>κ</a:mi>,</a:mo>Δ</a:mi></a:mrow></a:msub>⟩</a:mo></a:math>. Here, <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msup><i:mi>κ</i:mi><i:mrow><i:mo>−</i:mo><i:mn>2</i:mn></i:mrow></i:msup></i:math> is the variance of the envelope, and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msup><k:mi mathvariant=\"normal\">Δ</k:mi><k:mn>2</k:mn></k:msup></k:math> is the variance of the individual peaks. We show that the circuit accepts with constant probability and—conditioned on acceptance—the output state is polynomially close in <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mo stretchy=\"false\">(</n:mo><n:mi>κ</n:mi><n:mo>,</n:mo><n:mi mathvariant=\"normal\">Δ</n:mi><n:mo stretchy=\"false\">)</n:mo></n:math> to the state <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mo stretchy=\"false\">|</s:mo><s:msub><s:mrow><s:mi mathvariant=\"sans-serif\">G</s:mi><s:mi mathvariant=\"sans-serif\">K</s:mi><s:mi mathvariant=\"sans-serif\">P</s:mi></s:mrow><s:mrow><s:mi>κ</s:mi><s:mo>,</s:mo><s:mi mathvariant=\"normal\">Δ</s:mi></s:mrow></s:msub><s:mo stretchy=\"false\">⟩</s:mo></s:math>. The size of our circuit is linear in (</ab:mo>log</ab:mi>1</ab:mn>/</ab:mo>κ</ab:mi>,</ab:mo>log</ab:mi>1</ab:mn>/</ab:mo>Δ</ab:mi>)</ab:mo></ab:math>. To our knowledge, this is the first protocol for GKP-state preparation with fidelity guarantees for the prepared state. We also show converse bounds, establishing that the linear circuit-size dependence of our construction is optimal. This fully characterizes the complexity of GKP states.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"11 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity of Gottesman-Kitaev-Preskill States\",\"authors\":\"Lukas Brenner, Libor Caha, Xavier Coiteux-Roy, Robert Koenig\",\"doi\":\"10.1103/4ww5-4yww\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate the study of state complexity for continuous-variable quantum systems. Concretely, we consider a setup with bosonic modes and auxiliary qubits, where available operations include Gaussian one- and two-mode operations and single- and two-qubit operations as well as qubit-controlled phase-space displacements. We define the (approximate) complexity of a bosonic state by the minimum size of a circuit that prepares an approximation to the state in trace distance. We propose a new circuit which prepares an approximate Gottesman-Kitaev-Preskill (GKP) state |</a:mo>G</a:mi>K</a:mi>P</a:mi></a:mrow>κ</a:mi>,</a:mo>Δ</a:mi></a:mrow></a:msub>⟩</a:mo></a:math>. Here, <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msup><i:mi>κ</i:mi><i:mrow><i:mo>−</i:mo><i:mn>2</i:mn></i:mrow></i:msup></i:math> is the variance of the envelope, and <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:msup><k:mi mathvariant=\\\"normal\\\">Δ</k:mi><k:mn>2</k:mn></k:msup></k:math> is the variance of the individual peaks. We show that the circuit accepts with constant probability and—conditioned on acceptance—the output state is polynomially close in <n:math xmlns:n=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><n:mo stretchy=\\\"false\\\">(</n:mo><n:mi>κ</n:mi><n:mo>,</n:mo><n:mi mathvariant=\\\"normal\\\">Δ</n:mi><n:mo stretchy=\\\"false\\\">)</n:mo></n:math> to the state <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mo stretchy=\\\"false\\\">|</s:mo><s:msub><s:mrow><s:mi mathvariant=\\\"sans-serif\\\">G</s:mi><s:mi mathvariant=\\\"sans-serif\\\">K</s:mi><s:mi mathvariant=\\\"sans-serif\\\">P</s:mi></s:mrow><s:mrow><s:mi>κ</s:mi><s:mo>,</s:mo><s:mi mathvariant=\\\"normal\\\">Δ</s:mi></s:mrow></s:msub><s:mo stretchy=\\\"false\\\">⟩</s:mo></s:math>. The size of our circuit is linear in (</ab:mo>log</ab:mi>1</ab:mn>/</ab:mo>κ</ab:mi>,</ab:mo>log</ab:mi>1</ab:mn>/</ab:mo>Δ</ab:mi>)</ab:mo></ab:math>. To our knowledge, this is the first protocol for GKP-state preparation with fidelity guarantees for the prepared state. We also show converse bounds, establishing that the linear circuit-size dependence of our construction is optimal. This fully characterizes the complexity of GKP states.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/4ww5-4yww\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/4ww5-4yww","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
We initiate the study of state complexity for continuous-variable quantum systems. Concretely, we consider a setup with bosonic modes and auxiliary qubits, where available operations include Gaussian one- and two-mode operations and single- and two-qubit operations as well as qubit-controlled phase-space displacements. We define the (approximate) complexity of a bosonic state by the minimum size of a circuit that prepares an approximation to the state in trace distance. We propose a new circuit which prepares an approximate Gottesman-Kitaev-Preskill (GKP) state |GKPκ,Δ⟩. Here, κ−2 is the variance of the envelope, and Δ2 is the variance of the individual peaks. We show that the circuit accepts with constant probability and—conditioned on acceptance—the output state is polynomially close in (κ,Δ) to the state |GKPκ,Δ⟩. The size of our circuit is linear in (log1/κ,log1/Δ). To our knowledge, this is the first protocol for GKP-state preparation with fidelity guarantees for the prepared state. We also show converse bounds, establishing that the linear circuit-size dependence of our construction is optimal. This fully characterizes the complexity of GKP states.
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.