Gottesman-Kitaev-Preskill状态的复杂性

IF 15.7 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Lukas Brenner, Libor Caha, Xavier Coiteux-Roy, Robert Koenig
{"title":"Gottesman-Kitaev-Preskill状态的复杂性","authors":"Lukas Brenner, Libor Caha, Xavier Coiteux-Roy, Robert Koenig","doi":"10.1103/4ww5-4yww","DOIUrl":null,"url":null,"abstract":"We initiate the study of state complexity for continuous-variable quantum systems. Concretely, we consider a setup with bosonic modes and auxiliary qubits, where available operations include Gaussian one- and two-mode operations and single- and two-qubit operations as well as qubit-controlled phase-space displacements. We define the (approximate) complexity of a bosonic state by the minimum size of a circuit that prepares an approximation to the state in trace distance. We propose a new circuit which prepares an approximate Gottesman-Kitaev-Preskill (GKP) state |</a:mo>G</a:mi>K</a:mi>P</a:mi></a:mrow>κ</a:mi>,</a:mo>Δ</a:mi></a:mrow></a:msub>⟩</a:mo></a:math>. Here, <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msup><i:mi>κ</i:mi><i:mrow><i:mo>−</i:mo><i:mn>2</i:mn></i:mrow></i:msup></i:math> is the variance of the envelope, and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msup><k:mi mathvariant=\"normal\">Δ</k:mi><k:mn>2</k:mn></k:msup></k:math> is the variance of the individual peaks. We show that the circuit accepts with constant probability and—conditioned on acceptance—the output state is polynomially close in <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mo stretchy=\"false\">(</n:mo><n:mi>κ</n:mi><n:mo>,</n:mo><n:mi mathvariant=\"normal\">Δ</n:mi><n:mo stretchy=\"false\">)</n:mo></n:math> to the state <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mo stretchy=\"false\">|</s:mo><s:msub><s:mrow><s:mi mathvariant=\"sans-serif\">G</s:mi><s:mi mathvariant=\"sans-serif\">K</s:mi><s:mi mathvariant=\"sans-serif\">P</s:mi></s:mrow><s:mrow><s:mi>κ</s:mi><s:mo>,</s:mo><s:mi mathvariant=\"normal\">Δ</s:mi></s:mrow></s:msub><s:mo stretchy=\"false\">⟩</s:mo></s:math>. The size of our circuit is linear in (</ab:mo>log</ab:mi>1</ab:mn>/</ab:mo>κ</ab:mi>,</ab:mo>log</ab:mi>1</ab:mn>/</ab:mo>Δ</ab:mi>)</ab:mo></ab:math>. To our knowledge, this is the first protocol for GKP-state preparation with fidelity guarantees for the prepared state. We also show converse bounds, establishing that the linear circuit-size dependence of our construction is optimal. This fully characterizes the complexity of GKP states.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"11 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity of Gottesman-Kitaev-Preskill States\",\"authors\":\"Lukas Brenner, Libor Caha, Xavier Coiteux-Roy, Robert Koenig\",\"doi\":\"10.1103/4ww5-4yww\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate the study of state complexity for continuous-variable quantum systems. Concretely, we consider a setup with bosonic modes and auxiliary qubits, where available operations include Gaussian one- and two-mode operations and single- and two-qubit operations as well as qubit-controlled phase-space displacements. We define the (approximate) complexity of a bosonic state by the minimum size of a circuit that prepares an approximation to the state in trace distance. We propose a new circuit which prepares an approximate Gottesman-Kitaev-Preskill (GKP) state |</a:mo>G</a:mi>K</a:mi>P</a:mi></a:mrow>κ</a:mi>,</a:mo>Δ</a:mi></a:mrow></a:msub>⟩</a:mo></a:math>. Here, <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msup><i:mi>κ</i:mi><i:mrow><i:mo>−</i:mo><i:mn>2</i:mn></i:mrow></i:msup></i:math> is the variance of the envelope, and <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:msup><k:mi mathvariant=\\\"normal\\\">Δ</k:mi><k:mn>2</k:mn></k:msup></k:math> is the variance of the individual peaks. We show that the circuit accepts with constant probability and—conditioned on acceptance—the output state is polynomially close in <n:math xmlns:n=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><n:mo stretchy=\\\"false\\\">(</n:mo><n:mi>κ</n:mi><n:mo>,</n:mo><n:mi mathvariant=\\\"normal\\\">Δ</n:mi><n:mo stretchy=\\\"false\\\">)</n:mo></n:math> to the state <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mo stretchy=\\\"false\\\">|</s:mo><s:msub><s:mrow><s:mi mathvariant=\\\"sans-serif\\\">G</s:mi><s:mi mathvariant=\\\"sans-serif\\\">K</s:mi><s:mi mathvariant=\\\"sans-serif\\\">P</s:mi></s:mrow><s:mrow><s:mi>κ</s:mi><s:mo>,</s:mo><s:mi mathvariant=\\\"normal\\\">Δ</s:mi></s:mrow></s:msub><s:mo stretchy=\\\"false\\\">⟩</s:mo></s:math>. The size of our circuit is linear in (</ab:mo>log</ab:mi>1</ab:mn>/</ab:mo>κ</ab:mi>,</ab:mo>log</ab:mi>1</ab:mn>/</ab:mo>Δ</ab:mi>)</ab:mo></ab:math>. To our knowledge, this is the first protocol for GKP-state preparation with fidelity guarantees for the prepared state. We also show converse bounds, establishing that the linear circuit-size dependence of our construction is optimal. This fully characterizes the complexity of GKP states.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/4ww5-4yww\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/4ww5-4yww","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们开始研究连续变量量子系统的状态复杂度。具体地说,我们考虑了一个具有玻色子模式和辅助量子位的设置,其中可用的操作包括高斯一模和双模操作、单和双量子位操作以及量子位控制的相空间位移。我们用一个电路的最小尺寸来定义玻色子状态的(近似)复杂性,该电路可以在迹距上近似该状态。我们提出了一个新的电路,它准备了一个近似的Gottesman-Kitaev-Preskill (GKP)状态|GKPκ,Δ⟩。其中,κ−2为包络线的方差,Δ2为单个峰的方差。我们显示电路以恒定的概率接受并以接受为条件-输出状态多项式地接近于(κ,Δ)状态|GKPκ,Δ⟩。我们的电路的大小是线性的(log1/κ,log1/Δ)。据我们所知,这是第一个对准备状态有保真度保证的kp状态准备协议。我们还展示了逆界,证明了我们的结构的线性电路尺寸依赖是最优的。这充分表征了GKP状态的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complexity of Gottesman-Kitaev-Preskill States
We initiate the study of state complexity for continuous-variable quantum systems. Concretely, we consider a setup with bosonic modes and auxiliary qubits, where available operations include Gaussian one- and two-mode operations and single- and two-qubit operations as well as qubit-controlled phase-space displacements. We define the (approximate) complexity of a bosonic state by the minimum size of a circuit that prepares an approximation to the state in trace distance. We propose a new circuit which prepares an approximate Gottesman-Kitaev-Preskill (GKP) state |GKPκ,Δ⟩. Here, κ2 is the variance of the envelope, and Δ2 is the variance of the individual peaks. We show that the circuit accepts with constant probability and—conditioned on acceptance—the output state is polynomially close in (κ,Δ) to the state |GKPκ,Δ. The size of our circuit is linear in (log1/κ,log1/Δ). To our knowledge, this is the first protocol for GKP-state preparation with fidelity guarantees for the prepared state. We also show converse bounds, establishing that the linear circuit-size dependence of our construction is optimal. This fully characterizes the complexity of GKP states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信