{"title":"梯度引导的共保留特征金字塔网络用于LDCT图像去噪。","authors":"Li Zhou, Dayang Wang, Yongshun Xu, Shuo Han, Bahareh Morovati, Shuyi Fan, Hengyong Yu","doi":"10.1007/978-3-031-72390-2_15","DOIUrl":null,"url":null,"abstract":"<p><p>Low-dose computed tomography (LDCT) reduces the risks of radiation exposure but introduces noise and artifacts into CT images. The Feature Pyramid Network (FPN) is a conventional method for extracting multi-scale feature maps from input images. While upper layers in FPN enhance semantic value, details become generalized with reduced spatial resolution at each layer. In this work, we propose a Gradient Guided Co-Retention Feature Pyramid Network (G2CR-FPN) to address the connection between spatial resolution and semantic value beyond feature maps extracted from LDCT images. The network is structured with three essential paths: the bottom-up path utilizes the FPN structure to generate the hierarchical feature maps, representing multi-scale spatial resolutions and semantic values. Meanwhile, the lateral path serves as a skip connection between feature maps with the same spatial resolution, while also functioning feature maps as directional gradients. This path incorporates a gradient approximation, deriving edge-like enhanced feature maps in horizontal and vertical directions. The top-down path incorporates a proposed co-retention block that learns the high-level semantic value embedded in the preceding map of the path. This learning process is guided by the directional gradient approximation of the high-resolution feature map from the bottom-up path. Experimental results on the clinical CT images demonstrated the promising performance of the model. Our code is available at: https://github.com/liz109/G2CR-FPN.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15012 ","pages":"153-163"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443485/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gradient Guided Co-Retention Feature Pyramid Network for LDCT Image Denoising.\",\"authors\":\"Li Zhou, Dayang Wang, Yongshun Xu, Shuo Han, Bahareh Morovati, Shuyi Fan, Hengyong Yu\",\"doi\":\"10.1007/978-3-031-72390-2_15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low-dose computed tomography (LDCT) reduces the risks of radiation exposure but introduces noise and artifacts into CT images. The Feature Pyramid Network (FPN) is a conventional method for extracting multi-scale feature maps from input images. While upper layers in FPN enhance semantic value, details become generalized with reduced spatial resolution at each layer. In this work, we propose a Gradient Guided Co-Retention Feature Pyramid Network (G2CR-FPN) to address the connection between spatial resolution and semantic value beyond feature maps extracted from LDCT images. The network is structured with three essential paths: the bottom-up path utilizes the FPN structure to generate the hierarchical feature maps, representing multi-scale spatial resolutions and semantic values. Meanwhile, the lateral path serves as a skip connection between feature maps with the same spatial resolution, while also functioning feature maps as directional gradients. This path incorporates a gradient approximation, deriving edge-like enhanced feature maps in horizontal and vertical directions. The top-down path incorporates a proposed co-retention block that learns the high-level semantic value embedded in the preceding map of the path. This learning process is guided by the directional gradient approximation of the high-resolution feature map from the bottom-up path. Experimental results on the clinical CT images demonstrated the promising performance of the model. Our code is available at: https://github.com/liz109/G2CR-FPN.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"15012 \",\"pages\":\"153-163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443485/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-72390-2_15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-72390-2_15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Gradient Guided Co-Retention Feature Pyramid Network for LDCT Image Denoising.
Low-dose computed tomography (LDCT) reduces the risks of radiation exposure but introduces noise and artifacts into CT images. The Feature Pyramid Network (FPN) is a conventional method for extracting multi-scale feature maps from input images. While upper layers in FPN enhance semantic value, details become generalized with reduced spatial resolution at each layer. In this work, we propose a Gradient Guided Co-Retention Feature Pyramid Network (G2CR-FPN) to address the connection between spatial resolution and semantic value beyond feature maps extracted from LDCT images. The network is structured with three essential paths: the bottom-up path utilizes the FPN structure to generate the hierarchical feature maps, representing multi-scale spatial resolutions and semantic values. Meanwhile, the lateral path serves as a skip connection between feature maps with the same spatial resolution, while also functioning feature maps as directional gradients. This path incorporates a gradient approximation, deriving edge-like enhanced feature maps in horizontal and vertical directions. The top-down path incorporates a proposed co-retention block that learns the high-level semantic value embedded in the preceding map of the path. This learning process is guided by the directional gradient approximation of the high-resolution feature map from the bottom-up path. Experimental results on the clinical CT images demonstrated the promising performance of the model. Our code is available at: https://github.com/liz109/G2CR-FPN.