持久束拉普拉斯。

IF 1.4 Q2 MATHEMATICS, APPLIED
Xiaoqi Wei, Guo-Wei Wei
{"title":"持久束拉普拉斯。","authors":"Xiaoqi Wei, Guo-Wei Wei","doi":"10.3934/fods.2024033","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, various types of topological Laplacians have been studied from the perspective of data analysis. The spectral theory of these Laplacians has significantly extended the scope of algebraic topology and data analysis. Inspired by the theory of persistent Laplacians and cellular sheaves, this work develops the theory of persistent sheaf Laplacians for cellular sheaves and describes how to construct sheaves for a point cloud where each point is associated with a quantity that can be devised to embed physical properties. The spectra of persistent sheaf Laplacians encode both geometrical and non-geometrical information of the given point cloud. The theory of persistent sheaf Laplacians provides an elegant method for fusing different types of data and has significant potential for future development.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"7 2","pages":"446-463"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12442877/pdf/","citationCount":"0","resultStr":"{\"title\":\"PERSISTENT SHEAF LAPLACIANS.\",\"authors\":\"Xiaoqi Wei, Guo-Wei Wei\",\"doi\":\"10.3934/fods.2024033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, various types of topological Laplacians have been studied from the perspective of data analysis. The spectral theory of these Laplacians has significantly extended the scope of algebraic topology and data analysis. Inspired by the theory of persistent Laplacians and cellular sheaves, this work develops the theory of persistent sheaf Laplacians for cellular sheaves and describes how to construct sheaves for a point cloud where each point is associated with a quantity that can be devised to embed physical properties. The spectra of persistent sheaf Laplacians encode both geometrical and non-geometrical information of the given point cloud. The theory of persistent sheaf Laplacians provides an elegant method for fusing different types of data and has significant potential for future development.</p>\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":\"7 2\",\"pages\":\"446-463\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12442877/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2024033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2024033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们从数据分析的角度研究了各种类型的拓扑拉普拉斯算子。这些拉普拉斯算子的谱理论极大地扩展了代数拓扑和数据分析的范围。受持续拉普拉斯算子和细胞束理论的启发,本研究发展了细胞束的持续束拉普拉斯算子理论,并描述了如何为点云构建束,其中每个点都与一个可以设计成嵌入物理属性的量相关联。持久束拉普拉斯谱编码了给定点云的几何和非几何信息。持久层拉普拉斯理论为融合不同类型的数据提供了一种优雅的方法,在未来的发展中具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERSISTENT SHEAF LAPLACIANS.

Recently, various types of topological Laplacians have been studied from the perspective of data analysis. The spectral theory of these Laplacians has significantly extended the scope of algebraic topology and data analysis. Inspired by the theory of persistent Laplacians and cellular sheaves, this work develops the theory of persistent sheaf Laplacians for cellular sheaves and describes how to construct sheaves for a point cloud where each point is associated with a quantity that can be devised to embed physical properties. The spectra of persistent sheaf Laplacians encode both geometrical and non-geometrical information of the given point cloud. The theory of persistent sheaf Laplacians provides an elegant method for fusing different types of data and has significant potential for future development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信