Fangmao Ju , Yuzhu He , Fan Wang , Xianjun Li , Chen Niu , Chunfeng Lian , Jianhua Ma
{"title":"弱监督下病变增强的模型展开快速MRI。","authors":"Fangmao Ju , Yuzhu He , Fan Wang , Xianjun Li , Chen Niu , Chunfeng Lian , Jianhua Ma","doi":"10.1016/j.media.2025.103806","DOIUrl":null,"url":null,"abstract":"<div><div>The utility of Magnetic Resonance Imaging (MRI) in anomaly detection and disease diagnosis is well recognized. However, the current imaging protocol is often hindered by long scanning durations and a misalignment between the scanning process and the specific requirements of subsequent clinical assessments. While recent studies have actively explored accelerated MRI techniques, the majority have concentrated on improving overall image quality across all voxel locations, overlooking the attention to specific abnormalities that hold clinical significance. To address this discrepancy, we propose a model-unrolled deep-learning method, guided by weakly supervised lesion attention, for accelerated MRI oriented by downstream clinical needs. In particular, we construct a lesion-focused MRI reconstruction model, which incorporates customized learnable regularizations that can be learned efficiently by using only image-level labels to improve potential lesion reconstruction but preserve overall image quality. We then design a dedicated iterative algorithm to solve this task-driven reconstruction model, which is further unfolded as a cascaded deep network for lesion-focused fast imaging. Comprehensive experiments on two public datasets, i.e., fastMRI and Stanford Knee MRI Multi-Task Evaluation (SKM-TEA), demonstrate that our approach, referred to as Lesion-Focused MRI (LF-MRI), surpassed existing accelerated MRI methods by relatively large margins. Remarkably, LF-MRI led to substantial improvements in areas showing pathology. The source code and pretrained models will be publicly available at <span><span>https://github.com/ladderlab-xjtu/LF-MRI</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"107 ","pages":"Article 103806"},"PeriodicalIF":11.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-unrolled fast MRI with weakly supervised lesion enhancement\",\"authors\":\"Fangmao Ju , Yuzhu He , Fan Wang , Xianjun Li , Chen Niu , Chunfeng Lian , Jianhua Ma\",\"doi\":\"10.1016/j.media.2025.103806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The utility of Magnetic Resonance Imaging (MRI) in anomaly detection and disease diagnosis is well recognized. However, the current imaging protocol is often hindered by long scanning durations and a misalignment between the scanning process and the specific requirements of subsequent clinical assessments. While recent studies have actively explored accelerated MRI techniques, the majority have concentrated on improving overall image quality across all voxel locations, overlooking the attention to specific abnormalities that hold clinical significance. To address this discrepancy, we propose a model-unrolled deep-learning method, guided by weakly supervised lesion attention, for accelerated MRI oriented by downstream clinical needs. In particular, we construct a lesion-focused MRI reconstruction model, which incorporates customized learnable regularizations that can be learned efficiently by using only image-level labels to improve potential lesion reconstruction but preserve overall image quality. We then design a dedicated iterative algorithm to solve this task-driven reconstruction model, which is further unfolded as a cascaded deep network for lesion-focused fast imaging. Comprehensive experiments on two public datasets, i.e., fastMRI and Stanford Knee MRI Multi-Task Evaluation (SKM-TEA), demonstrate that our approach, referred to as Lesion-Focused MRI (LF-MRI), surpassed existing accelerated MRI methods by relatively large margins. Remarkably, LF-MRI led to substantial improvements in areas showing pathology. The source code and pretrained models will be publicly available at <span><span>https://github.com/ladderlab-xjtu/LF-MRI</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"107 \",\"pages\":\"Article 103806\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525003524\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525003524","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Model-unrolled fast MRI with weakly supervised lesion enhancement
The utility of Magnetic Resonance Imaging (MRI) in anomaly detection and disease diagnosis is well recognized. However, the current imaging protocol is often hindered by long scanning durations and a misalignment between the scanning process and the specific requirements of subsequent clinical assessments. While recent studies have actively explored accelerated MRI techniques, the majority have concentrated on improving overall image quality across all voxel locations, overlooking the attention to specific abnormalities that hold clinical significance. To address this discrepancy, we propose a model-unrolled deep-learning method, guided by weakly supervised lesion attention, for accelerated MRI oriented by downstream clinical needs. In particular, we construct a lesion-focused MRI reconstruction model, which incorporates customized learnable regularizations that can be learned efficiently by using only image-level labels to improve potential lesion reconstruction but preserve overall image quality. We then design a dedicated iterative algorithm to solve this task-driven reconstruction model, which is further unfolded as a cascaded deep network for lesion-focused fast imaging. Comprehensive experiments on two public datasets, i.e., fastMRI and Stanford Knee MRI Multi-Task Evaluation (SKM-TEA), demonstrate that our approach, referred to as Lesion-Focused MRI (LF-MRI), surpassed existing accelerated MRI methods by relatively large margins. Remarkably, LF-MRI led to substantial improvements in areas showing pathology. The source code and pretrained models will be publicly available at https://github.com/ladderlab-xjtu/LF-MRI.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.