表征神经退行性疾病静息状态脑电图振荡和非周期活动:一项多中心研究。

IF 6.3 2区 医学 Q1 BIOLOGY
Alberto Jaramillo-Jimenez , Yorguin-Jose Mantilla-Ramos , Diego A. Tovar-Rios , Francisco Lopera , David Aguillón , John Fredy Ochoa-Gomez , Claire Paquet , Sinead Gaubert , Matteo Pardini , Dario Arnaldi , John-Paul Taylor , Tormod Fladby , Kolbjørn Brønnick , Dag Aarsland , Laura Bonanni , E-DLB Consortium
{"title":"表征神经退行性疾病静息状态脑电图振荡和非周期活动:一项多中心研究。","authors":"Alberto Jaramillo-Jimenez ,&nbsp;Yorguin-Jose Mantilla-Ramos ,&nbsp;Diego A. Tovar-Rios ,&nbsp;Francisco Lopera ,&nbsp;David Aguillón ,&nbsp;John Fredy Ochoa-Gomez ,&nbsp;Claire Paquet ,&nbsp;Sinead Gaubert ,&nbsp;Matteo Pardini ,&nbsp;Dario Arnaldi ,&nbsp;John-Paul Taylor ,&nbsp;Tormod Fladby ,&nbsp;Kolbjørn Brønnick ,&nbsp;Dag Aarsland ,&nbsp;Laura Bonanni ,&nbsp;E-DLB Consortium","doi":"10.1016/j.compbiomed.2025.111080","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Abnormalities in resting-state electroencephalogram (rsEEG) posterior alpha rhythm are promising biomarkers of neurodegenerative diseases (NDDs), often assessed via spectral analysis, ignoring the signal's non-rhythmic (aperiodic) component. Evidence assessing aperiodic and oscillatory rsEEG abnormalities across NDDs is scarce and often underpowered. Multicenter studies could tackle these limitations, but data pooling might introduce site-related rsEEG differences (batch effects). This study aims to characterize rsEEG oscillatory and aperiodic patterns across NDDs, minimizing potential batch effects.</div></div><div><h3>Methods</h3><div>RsEEGs (n = 639; 11 sites) were automatically preprocessed. Signals comprised healthy controls (HC = 153), Lewy Body Dementias (LBD = 95), Parkinson's Disease (PD = 71), Alzheimer's Disease (AD = 186), Frontotemporal Dementia (FTD = 23), Mild Cognitive Impairment (MCI) in positive Lewy Bodies pathology or PD (MCI-LBD = 34), and MCI in positive AD pathology (MCI-AD = 77). Power spectrum batch effects were harmonized using reComBat (age, sex, and diagnosis-adjusted). Harmonization was evaluated with functional and mass-univariate ANOVAs. Oscillatory and aperiodic parameters were extracted from the batch-harmonized power spectrum. NDDs-related differences were estimated with functional and mass-univariate tests, bootstrapped pairwise comparisons, and logistic regressions.</div></div><div><h3>Results</h3><div>Statistical testing showed reduced batch effects after harmonization. Significantly steeper aperiodic parameters and lower oscillatory center frequency were observed in LBD compared to other NDDs. The oscillatory extended alpha power was lower in AD comparisons (except AD vs. LBD).</div></div><div><h3>Conclusions</h3><div>Batch effects in the rsEEG power spectrum can be mitigated with harmonization. Oscillatory alpha power reduction may better reflect AD abnormalities, whereas pronounced oscillatory frequency slowing and greater aperiodic activity characterize LBD.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"197 ","pages":"Article 111080"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing resting-state EEG oscillatory and aperiodic activity in neurodegenerative diseases: A multicentric study\",\"authors\":\"Alberto Jaramillo-Jimenez ,&nbsp;Yorguin-Jose Mantilla-Ramos ,&nbsp;Diego A. Tovar-Rios ,&nbsp;Francisco Lopera ,&nbsp;David Aguillón ,&nbsp;John Fredy Ochoa-Gomez ,&nbsp;Claire Paquet ,&nbsp;Sinead Gaubert ,&nbsp;Matteo Pardini ,&nbsp;Dario Arnaldi ,&nbsp;John-Paul Taylor ,&nbsp;Tormod Fladby ,&nbsp;Kolbjørn Brønnick ,&nbsp;Dag Aarsland ,&nbsp;Laura Bonanni ,&nbsp;E-DLB Consortium\",\"doi\":\"10.1016/j.compbiomed.2025.111080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Abnormalities in resting-state electroencephalogram (rsEEG) posterior alpha rhythm are promising biomarkers of neurodegenerative diseases (NDDs), often assessed via spectral analysis, ignoring the signal's non-rhythmic (aperiodic) component. Evidence assessing aperiodic and oscillatory rsEEG abnormalities across NDDs is scarce and often underpowered. Multicenter studies could tackle these limitations, but data pooling might introduce site-related rsEEG differences (batch effects). This study aims to characterize rsEEG oscillatory and aperiodic patterns across NDDs, minimizing potential batch effects.</div></div><div><h3>Methods</h3><div>RsEEGs (n = 639; 11 sites) were automatically preprocessed. Signals comprised healthy controls (HC = 153), Lewy Body Dementias (LBD = 95), Parkinson's Disease (PD = 71), Alzheimer's Disease (AD = 186), Frontotemporal Dementia (FTD = 23), Mild Cognitive Impairment (MCI) in positive Lewy Bodies pathology or PD (MCI-LBD = 34), and MCI in positive AD pathology (MCI-AD = 77). Power spectrum batch effects were harmonized using reComBat (age, sex, and diagnosis-adjusted). Harmonization was evaluated with functional and mass-univariate ANOVAs. Oscillatory and aperiodic parameters were extracted from the batch-harmonized power spectrum. NDDs-related differences were estimated with functional and mass-univariate tests, bootstrapped pairwise comparisons, and logistic regressions.</div></div><div><h3>Results</h3><div>Statistical testing showed reduced batch effects after harmonization. Significantly steeper aperiodic parameters and lower oscillatory center frequency were observed in LBD compared to other NDDs. The oscillatory extended alpha power was lower in AD comparisons (except AD vs. LBD).</div></div><div><h3>Conclusions</h3><div>Batch effects in the rsEEG power spectrum can be mitigated with harmonization. Oscillatory alpha power reduction may better reflect AD abnormalities, whereas pronounced oscillatory frequency slowing and greater aperiodic activity characterize LBD.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"197 \",\"pages\":\"Article 111080\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525014325\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525014325","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:静息状态脑电图(rsEEG)后α节律异常是神经退行性疾病(ndd)的有希望的生物标志物,通常通过频谱分析来评估,忽略了信号的非节律性(非周期性)成分。评估ndd非周期性和振荡性rsEEG异常的证据很少,而且常常不足。多中心研究可以解决这些限制,但数据池可能会引入与站点相关的rsEEG差异(批效应)。本研究旨在表征ndd的rsEEG振荡和非周期模式,最大限度地减少潜在的批量效应。方法:自动预处理RsEEGs (n = 639, 11个位点)。信号包括健康对照组(153),路易体痴呆(LBD = 95),帕金森病(PD = 71),阿尔茨海默病(AD = 186),额颞叶痴呆(FTD = 23),轻度认知障碍(MCI)阳性路易体病理或PD (MCI-LBD = 34),和MCI阳性AD病理(MCI-AD = 77)。使用reComBat(年龄、性别和诊断调整)协调功率谱批次效应。用功能方差分析和质量单变量方差分析评估和谐度。从批量协调功率谱中提取振荡参数和非周期参数。通过功能检验和单变量检验、自举两两比较和逻辑回归估计ndds相关差异。结果:统计检验显示统一后批次效应降低。与其他ndd相比,LBD的非周期参数更陡,振荡中心频率更低。AD组的振荡扩展α功率较低(AD与LBD组除外)。结论:rsEEG功率谱中的批效应可以通过协调来减轻。振荡α功率降低可能更好地反映AD异常,而明显的振荡频率减慢和更大的非周期性活动是LBD的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing resting-state EEG oscillatory and aperiodic activity in neurodegenerative diseases: A multicentric study

Background

Abnormalities in resting-state electroencephalogram (rsEEG) posterior alpha rhythm are promising biomarkers of neurodegenerative diseases (NDDs), often assessed via spectral analysis, ignoring the signal's non-rhythmic (aperiodic) component. Evidence assessing aperiodic and oscillatory rsEEG abnormalities across NDDs is scarce and often underpowered. Multicenter studies could tackle these limitations, but data pooling might introduce site-related rsEEG differences (batch effects). This study aims to characterize rsEEG oscillatory and aperiodic patterns across NDDs, minimizing potential batch effects.

Methods

RsEEGs (n = 639; 11 sites) were automatically preprocessed. Signals comprised healthy controls (HC = 153), Lewy Body Dementias (LBD = 95), Parkinson's Disease (PD = 71), Alzheimer's Disease (AD = 186), Frontotemporal Dementia (FTD = 23), Mild Cognitive Impairment (MCI) in positive Lewy Bodies pathology or PD (MCI-LBD = 34), and MCI in positive AD pathology (MCI-AD = 77). Power spectrum batch effects were harmonized using reComBat (age, sex, and diagnosis-adjusted). Harmonization was evaluated with functional and mass-univariate ANOVAs. Oscillatory and aperiodic parameters were extracted from the batch-harmonized power spectrum. NDDs-related differences were estimated with functional and mass-univariate tests, bootstrapped pairwise comparisons, and logistic regressions.

Results

Statistical testing showed reduced batch effects after harmonization. Significantly steeper aperiodic parameters and lower oscillatory center frequency were observed in LBD compared to other NDDs. The oscillatory extended alpha power was lower in AD comparisons (except AD vs. LBD).

Conclusions

Batch effects in the rsEEG power spectrum can be mitigated with harmonization. Oscillatory alpha power reduction may better reflect AD abnormalities, whereas pronounced oscillatory frequency slowing and greater aperiodic activity characterize LBD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信