双层记忆性FitzHugh-Nagumo神经网络中能量诱导的类嵌合体状态。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0285156
Ying Xie, Xuening Li, Xueqin Wang, Zhiqiu Ye, Lijian Yang, Ya Jia
{"title":"双层记忆性FitzHugh-Nagumo神经网络中能量诱导的类嵌合体状态。","authors":"Ying Xie, Xuening Li, Xueqin Wang, Zhiqiu Ye, Lijian Yang, Ya Jia","doi":"10.1063/5.0285156","DOIUrl":null,"url":null,"abstract":"<p><p>Despite extensive efforts to analyze synchronization and chimera states, it is limited to understand their emergence from an energy-based perspective in multilayer network synchronization. In this study, the bilayer FitzHugh-Nagumo neural network is constructed and the heterogeneity is realized by distinct dynamics of periodic and chaotic firing patterns. By analyzing the energy patterns of neurons, it is discovered that the intralayer synchronization is independent of the interlayer coupling in networks. Under specific conditions of intralayer coupling strength and nearest-neighbor connectivity, periodic neurons with a small energy difference give rise to chimera-like states. Meanwhile, chaotic neurons with a large energy difference induce a traveling phase-wave pattern. Furthermore, nonlocal coupling with proper synaptic strength leads to the emergence of a strong chimera-like state, which maintains energy between the energies of synchronized and desynchronized cases. The results uncover an energy-driven mechanism underlying the emergence of complex collective behaviors in multilayer neuronal systems, and it offers potential guidance for designing energy-efficient neuromorphic circuits.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-induced chimera-like states in bilayer memristive FitzHugh-Nagumo neural networks.\",\"authors\":\"Ying Xie, Xuening Li, Xueqin Wang, Zhiqiu Ye, Lijian Yang, Ya Jia\",\"doi\":\"10.1063/5.0285156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite extensive efforts to analyze synchronization and chimera states, it is limited to understand their emergence from an energy-based perspective in multilayer network synchronization. In this study, the bilayer FitzHugh-Nagumo neural network is constructed and the heterogeneity is realized by distinct dynamics of periodic and chaotic firing patterns. By analyzing the energy patterns of neurons, it is discovered that the intralayer synchronization is independent of the interlayer coupling in networks. Under specific conditions of intralayer coupling strength and nearest-neighbor connectivity, periodic neurons with a small energy difference give rise to chimera-like states. Meanwhile, chaotic neurons with a large energy difference induce a traveling phase-wave pattern. Furthermore, nonlocal coupling with proper synaptic strength leads to the emergence of a strong chimera-like state, which maintains energy between the energies of synchronized and desynchronized cases. The results uncover an energy-driven mechanism underlying the emergence of complex collective behaviors in multilayer neuronal systems, and it offers potential guidance for designing energy-efficient neuromorphic circuits.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0285156\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0285156","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

尽管对同步和嵌合体状态进行了大量的分析,但从基于能量的角度来理解它们在多层网络同步中的出现是有限的。在本研究中,构建了双层FitzHugh-Nagumo神经网络,并通过周期性和混沌发射模式的不同动力学实现了非均质性。通过分析神经元的能量模式,发现网络中的层内同步与层间耦合无关。在层内耦合强度和最近邻连通性的特定条件下,能量差较小的周期神经元会产生类嵌合体状态。同时,能量差较大的混沌神经元诱导出行相波模式。此外,具有适当突触强度的非局部耦合导致强嵌合体状态的出现,该状态保持了同步和非同步情况下的能量之间的能量。研究结果揭示了多层神经元系统中复杂集体行为的能量驱动机制,并为设计节能的神经形态电路提供了潜在的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-induced chimera-like states in bilayer memristive FitzHugh-Nagumo neural networks.

Despite extensive efforts to analyze synchronization and chimera states, it is limited to understand their emergence from an energy-based perspective in multilayer network synchronization. In this study, the bilayer FitzHugh-Nagumo neural network is constructed and the heterogeneity is realized by distinct dynamics of periodic and chaotic firing patterns. By analyzing the energy patterns of neurons, it is discovered that the intralayer synchronization is independent of the interlayer coupling in networks. Under specific conditions of intralayer coupling strength and nearest-neighbor connectivity, periodic neurons with a small energy difference give rise to chimera-like states. Meanwhile, chaotic neurons with a large energy difference induce a traveling phase-wave pattern. Furthermore, nonlocal coupling with proper synaptic strength leads to the emergence of a strong chimera-like state, which maintains energy between the energies of synchronized and desynchronized cases. The results uncover an energy-driven mechanism underlying the emergence of complex collective behaviors in multilayer neuronal systems, and it offers potential guidance for designing energy-efficient neuromorphic circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信