多层空间分辨转录组学数据分析聚类方法的综合比较。

IF 7.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Caiwei Xiong, Shuai Huang, Muqing Zhou, Yiyan Zhang, Wenrong Wu, Xihao Li, Huaxiu Yao, Jiawen Chen, Yun Li
{"title":"多层空间分辨转录组学数据分析聚类方法的综合比较。","authors":"Caiwei Xiong, Shuai Huang, Muqing Zhou, Yiyan Zhang, Wenrong Wu, Xihao Li, Huaxiu Yao, Jiawen Chen, Yun Li","doi":"10.1093/bib/bbaf471","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial transcriptomics (ST) data, by providing spatial information, enable simultaneous analysis of gene expression distributions and their spatial patterns within tissue. Clustering or spatial domain detection represents an essential methodology for ST data, facilitating the exploration of spatial organizations with shared gene expression or histological characteristics. Traditionally, clustering algorithms for ST have focused on individual tissue sections. However, the emergence of numerous contiguous tissue sections derived from the same or similar tissue specimens within or across individuals has led to the development of multi-slice clustering methods. In this study, we assess seven single-slice and four multi-slice clustering methods on two simulated datasets and four real datasets. Additionally, we investigate the effectiveness of preprocessing techniques, including spatial coordinate alignment (e.g. PASTE) and gene expression batch effect removal (e.g. Harmony), on clustering performance. Our study provides a comprehensive comparison of clustering methods for multi-slice ST data, serving as a practical guide for method selection in various scenarios.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449087/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comprehensive comparison on clustering methods for multi-slice spatially resolved transcriptomics data analysis.\",\"authors\":\"Caiwei Xiong, Shuai Huang, Muqing Zhou, Yiyan Zhang, Wenrong Wu, Xihao Li, Huaxiu Yao, Jiawen Chen, Yun Li\",\"doi\":\"10.1093/bib/bbaf471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatial transcriptomics (ST) data, by providing spatial information, enable simultaneous analysis of gene expression distributions and their spatial patterns within tissue. Clustering or spatial domain detection represents an essential methodology for ST data, facilitating the exploration of spatial organizations with shared gene expression or histological characteristics. Traditionally, clustering algorithms for ST have focused on individual tissue sections. However, the emergence of numerous contiguous tissue sections derived from the same or similar tissue specimens within or across individuals has led to the development of multi-slice clustering methods. In this study, we assess seven single-slice and four multi-slice clustering methods on two simulated datasets and four real datasets. Additionally, we investigate the effectiveness of preprocessing techniques, including spatial coordinate alignment (e.g. PASTE) and gene expression batch effect removal (e.g. Harmony), on clustering performance. Our study provides a comprehensive comparison of clustering methods for multi-slice ST data, serving as a practical guide for method selection in various scenarios.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449087/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf471\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf471","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

空间转录组学(ST)数据通过提供空间信息,可以同时分析组织内基因表达分布及其空间模式。聚类或空间域检测是ST数据的基本方法,有助于探索具有共享基因表达或组织学特征的空间组织。传统上,ST的聚类算法集中在单个组织切片上。然而,个体内或个体间相同或相似的组织标本产生的大量连续组织切片的出现导致了多切片聚类方法的发展。在本研究中,我们在2个模拟数据集和4个真实数据集上评估了7种单切片和4种多切片聚类方法。此外,我们还研究了预处理技术的有效性,包括空间坐标对齐(如PASTE)和基因表达批次效应去除(如Harmony)对聚类性能的影响。我们的研究为多层ST数据的聚类方法提供了全面的比较,为各种场景下的方法选择提供了实用的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive comparison on clustering methods for multi-slice spatially resolved transcriptomics data analysis.

Spatial transcriptomics (ST) data, by providing spatial information, enable simultaneous analysis of gene expression distributions and their spatial patterns within tissue. Clustering or spatial domain detection represents an essential methodology for ST data, facilitating the exploration of spatial organizations with shared gene expression or histological characteristics. Traditionally, clustering algorithms for ST have focused on individual tissue sections. However, the emergence of numerous contiguous tissue sections derived from the same or similar tissue specimens within or across individuals has led to the development of multi-slice clustering methods. In this study, we assess seven single-slice and four multi-slice clustering methods on two simulated datasets and four real datasets. Additionally, we investigate the effectiveness of preprocessing techniques, including spatial coordinate alignment (e.g. PASTE) and gene expression batch effect removal (e.g. Harmony), on clustering performance. Our study provides a comprehensive comparison of clustering methods for multi-slice ST data, serving as a practical guide for method selection in various scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信