MIF-DTI:用于药物-靶标相互作用预测的多模态信息融合方法。

IF 7.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Jiehong Shan, Jinchen Sun, Haoran Zheng
{"title":"MIF-DTI:用于药物-靶标相互作用预测的多模态信息融合方法。","authors":"Jiehong Shan, Jinchen Sun, Haoran Zheng","doi":"10.1093/bib/bbaf474","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-target interaction (DTI) prediction is essential for drug discovery and repurposing. To overcome the limitations of current DTI prediction methods that rely on single-source encoding and inadequately fuse multimodal information, this study proposes a DTI prediction method based on multimodal information fusion (MIF-DTI) and further designs an ensemble version (MIF-DTI-B). MIF-DTI encodes the SMILES sequences of drugs and the amino acid sequences of targets via a sequence encoding module to extract their 1D sequence features. It conducts dual-view representation encoding on the hierarchical molecular graphs of drugs and the contact graphs of targets through a graph encoding module, aiming to capture their 2D topological structure information. A decoding module is utilized to fuse information from different modalities. MIF-DTI-B ensembles several MIF-DTI models through cross-validation strategy to improve predictive accuracy. This study evaluates the proposed models on three publicly accessible DTI datasets. Experimental results demonstrate that fully integrating multimodal information enables both MIF-DTI and MIF-DTI-B to consistently outperform state-of-the-art methods.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448477/pdf/","citationCount":"0","resultStr":"{\"title\":\"MIF-DTI: a multimodal information fusion method for drug-target interaction prediction.\",\"authors\":\"Jiehong Shan, Jinchen Sun, Haoran Zheng\",\"doi\":\"10.1093/bib/bbaf474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-target interaction (DTI) prediction is essential for drug discovery and repurposing. To overcome the limitations of current DTI prediction methods that rely on single-source encoding and inadequately fuse multimodal information, this study proposes a DTI prediction method based on multimodal information fusion (MIF-DTI) and further designs an ensemble version (MIF-DTI-B). MIF-DTI encodes the SMILES sequences of drugs and the amino acid sequences of targets via a sequence encoding module to extract their 1D sequence features. It conducts dual-view representation encoding on the hierarchical molecular graphs of drugs and the contact graphs of targets through a graph encoding module, aiming to capture their 2D topological structure information. A decoding module is utilized to fuse information from different modalities. MIF-DTI-B ensembles several MIF-DTI models through cross-validation strategy to improve predictive accuracy. This study evaluates the proposed models on three publicly accessible DTI datasets. Experimental results demonstrate that fully integrating multimodal information enables both MIF-DTI and MIF-DTI-B to consistently outperform state-of-the-art methods.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448477/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf474\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf474","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

药物-靶标相互作用(DTI)预测是药物发现和重新利用的关键。针对目前DTI预测方法依赖单源编码、多模态信息融合不足的局限性,提出了一种基于多模态信息融合的DTI预测方法(MIF-DTI),并进一步设计了集成版本(MIF-DTI- b)。MIF-DTI通过序列编码模块对药物的SMILES序列和靶标的氨基酸序列进行编码,提取它们的一维序列特征。通过图形编码模块对药物的层次分子图和靶点的接触图进行双视图表示编码,获取其二维拓扑结构信息。解码模块用于融合来自不同模态的信息。MIF-DTI- b通过交叉验证策略集成多个MIF-DTI模型,以提高预测精度。本研究在三个可公开访问的DTI数据集上评估了所提出的模型。实验结果表明,充分集成多模态信息可以使MIF-DTI和MIF-DTI- b始终优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MIF-DTI: a multimodal information fusion method for drug-target interaction prediction.

MIF-DTI: a multimodal information fusion method for drug-target interaction prediction.

MIF-DTI: a multimodal information fusion method for drug-target interaction prediction.

MIF-DTI: a multimodal information fusion method for drug-target interaction prediction.

Drug-target interaction (DTI) prediction is essential for drug discovery and repurposing. To overcome the limitations of current DTI prediction methods that rely on single-source encoding and inadequately fuse multimodal information, this study proposes a DTI prediction method based on multimodal information fusion (MIF-DTI) and further designs an ensemble version (MIF-DTI-B). MIF-DTI encodes the SMILES sequences of drugs and the amino acid sequences of targets via a sequence encoding module to extract their 1D sequence features. It conducts dual-view representation encoding on the hierarchical molecular graphs of drugs and the contact graphs of targets through a graph encoding module, aiming to capture their 2D topological structure information. A decoding module is utilized to fuse information from different modalities. MIF-DTI-B ensembles several MIF-DTI models through cross-validation strategy to improve predictive accuracy. This study evaluates the proposed models on three publicly accessible DTI datasets. Experimental results demonstrate that fully integrating multimodal information enables both MIF-DTI and MIF-DTI-B to consistently outperform state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信