{"title":"操纵线粒体基因表达。","authors":"Drishan Dahal, Luis D Cruz-Zargoza, Peter Rehling","doi":"10.1515/hsz-2025-0170","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are essential for cellular metabolism, serving as the primary source of adenosine triphosphate (ATP). This energy is generated by the oxidative phosphorylation (OXPHOS) system located in the inner mitochondrial membrane. Impairments in this machinery are linked to serious human diseases, especially in tissues with high energy demands. Assembly of the OXPHOS system requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes. The mitochondrial DNA encodes for 13 protein components, which are synthesized by mitochondrial ribosomes and inserted into the inner membrane during translation. Despite progress, key aspects of how mitochondrial gene expression is regulated remain elusive, largely due to the organelle's limited genetic accessibility. However, emerging technologies now offer new tools to manipulate various stages of this process. In this review, we explore recent strategies that expand our ability to target mitochondria genetically.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulating mitochondrial gene expression.\",\"authors\":\"Drishan Dahal, Luis D Cruz-Zargoza, Peter Rehling\",\"doi\":\"10.1515/hsz-2025-0170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are essential for cellular metabolism, serving as the primary source of adenosine triphosphate (ATP). This energy is generated by the oxidative phosphorylation (OXPHOS) system located in the inner mitochondrial membrane. Impairments in this machinery are linked to serious human diseases, especially in tissues with high energy demands. Assembly of the OXPHOS system requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes. The mitochondrial DNA encodes for 13 protein components, which are synthesized by mitochondrial ribosomes and inserted into the inner membrane during translation. Despite progress, key aspects of how mitochondrial gene expression is regulated remain elusive, largely due to the organelle's limited genetic accessibility. However, emerging technologies now offer new tools to manipulate various stages of this process. In this review, we explore recent strategies that expand our ability to target mitochondria genetically.</p>\",\"PeriodicalId\":8885,\"journal\":{\"name\":\"Biological Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/hsz-2025-0170\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2025-0170","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mitochondria are essential for cellular metabolism, serving as the primary source of adenosine triphosphate (ATP). This energy is generated by the oxidative phosphorylation (OXPHOS) system located in the inner mitochondrial membrane. Impairments in this machinery are linked to serious human diseases, especially in tissues with high energy demands. Assembly of the OXPHOS system requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes. The mitochondrial DNA encodes for 13 protein components, which are synthesized by mitochondrial ribosomes and inserted into the inner membrane during translation. Despite progress, key aspects of how mitochondrial gene expression is regulated remain elusive, largely due to the organelle's limited genetic accessibility. However, emerging technologies now offer new tools to manipulate various stages of this process. In this review, we explore recent strategies that expand our ability to target mitochondria genetically.
期刊介绍:
Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.