Kyeong Ah Park, Hee Sun Byun, Jaehee Ha, Chan Sol Kim, Kyung-Cheol Sohn, Sanghee Shin, Chan-Yong Park, Yeon-Jae Cho, Ill Young Lee, Gang Min Hur
{"title":"巴西蛋白通过破坏RIPK1多泛素化来阻碍IKK的激活,增加NF-κ组成活性细胞的凋亡敏感性。","authors":"Kyeong Ah Park, Hee Sun Byun, Jaehee Ha, Chan Sol Kim, Kyung-Cheol Sohn, Sanghee Shin, Chan-Yong Park, Yeon-Jae Cho, Ill Young Lee, Gang Min Hur","doi":"10.4062/biomolther.2025.099","DOIUrl":null,"url":null,"abstract":"<p><p>Ubiquitination of RIPK1 serves as a critical regulatory switch in determining the outcome of prosurvival NF-κB signaling by linking the TNFR1 signaling complex to upstream IKK activation. Therefore, identifying bioactive compounds that modulate RIPK1 ubiquitination has emerged as a promising strategy to enhance the therapeutic efficacy of TNF, particularly in cancers with constitutively active NF-κB signaling. In our previous <i>in vitro</i> phytochemical study, we demonstrated that brazilin, isolated from <i>Caesalpinia sappan</i> L., inhibits the catalytic activity of the IKK complex during TNF-mediated NF-κB activation without affecting RIPK1 ubiquitination at high concentrations (~50 μM), raising concerns about off-target effects. In this study, we now report that brazilein, an oxidized derivative of brazilin, acts as a potent inhibitor of RIPK1-dependent NF-κB activation upon TNFR1 engagement. Our findings reveal that brazilein markedly suppresses upstream IKK signaling events, including TNFR1-associated RIPK1 polyubiquitination and its interaction with IKKβ. In contrast, brazilein does not affect NIK/IKKκ-mediated non-canonical NF-κB activation induced by LIGHT, indicating its specificity for the canonical NF-κB pathway. Moreover, brazilein not only sensitizes cells to TNF-induced apoptosis but also induces apoptosis in A20-deficient and oncogenically transformed cells with constitutive NF-κB activity. Taken together, these results suggest a novel mechanism by which brazilein exerts anti-IKK activity through inhibition of RIPK1 ubiquitination, highlighting its potential as a candidate for NF-κB-targeted cancer therapy.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brazilein Impedes IKK Activation by Disrupting RIPK1 Polyubiquitination, Increasing Apoptotic Susceptibility in Cells with Constitutively Active NF-κ.\",\"authors\":\"Kyeong Ah Park, Hee Sun Byun, Jaehee Ha, Chan Sol Kim, Kyung-Cheol Sohn, Sanghee Shin, Chan-Yong Park, Yeon-Jae Cho, Ill Young Lee, Gang Min Hur\",\"doi\":\"10.4062/biomolther.2025.099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ubiquitination of RIPK1 serves as a critical regulatory switch in determining the outcome of prosurvival NF-κB signaling by linking the TNFR1 signaling complex to upstream IKK activation. Therefore, identifying bioactive compounds that modulate RIPK1 ubiquitination has emerged as a promising strategy to enhance the therapeutic efficacy of TNF, particularly in cancers with constitutively active NF-κB signaling. In our previous <i>in vitro</i> phytochemical study, we demonstrated that brazilin, isolated from <i>Caesalpinia sappan</i> L., inhibits the catalytic activity of the IKK complex during TNF-mediated NF-κB activation without affecting RIPK1 ubiquitination at high concentrations (~50 μM), raising concerns about off-target effects. In this study, we now report that brazilein, an oxidized derivative of brazilin, acts as a potent inhibitor of RIPK1-dependent NF-κB activation upon TNFR1 engagement. Our findings reveal that brazilein markedly suppresses upstream IKK signaling events, including TNFR1-associated RIPK1 polyubiquitination and its interaction with IKKβ. In contrast, brazilein does not affect NIK/IKKκ-mediated non-canonical NF-κB activation induced by LIGHT, indicating its specificity for the canonical NF-κB pathway. Moreover, brazilein not only sensitizes cells to TNF-induced apoptosis but also induces apoptosis in A20-deficient and oncogenically transformed cells with constitutive NF-κB activity. Taken together, these results suggest a novel mechanism by which brazilein exerts anti-IKK activity through inhibition of RIPK1 ubiquitination, highlighting its potential as a candidate for NF-κB-targeted cancer therapy.</p>\",\"PeriodicalId\":8949,\"journal\":{\"name\":\"Biomolecules & Therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4062/biomolther.2025.099\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2025.099","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Brazilein Impedes IKK Activation by Disrupting RIPK1 Polyubiquitination, Increasing Apoptotic Susceptibility in Cells with Constitutively Active NF-κ.
Ubiquitination of RIPK1 serves as a critical regulatory switch in determining the outcome of prosurvival NF-κB signaling by linking the TNFR1 signaling complex to upstream IKK activation. Therefore, identifying bioactive compounds that modulate RIPK1 ubiquitination has emerged as a promising strategy to enhance the therapeutic efficacy of TNF, particularly in cancers with constitutively active NF-κB signaling. In our previous in vitro phytochemical study, we demonstrated that brazilin, isolated from Caesalpinia sappan L., inhibits the catalytic activity of the IKK complex during TNF-mediated NF-κB activation without affecting RIPK1 ubiquitination at high concentrations (~50 μM), raising concerns about off-target effects. In this study, we now report that brazilein, an oxidized derivative of brazilin, acts as a potent inhibitor of RIPK1-dependent NF-κB activation upon TNFR1 engagement. Our findings reveal that brazilein markedly suppresses upstream IKK signaling events, including TNFR1-associated RIPK1 polyubiquitination and its interaction with IKKβ. In contrast, brazilein does not affect NIK/IKKκ-mediated non-canonical NF-κB activation induced by LIGHT, indicating its specificity for the canonical NF-κB pathway. Moreover, brazilein not only sensitizes cells to TNF-induced apoptosis but also induces apoptosis in A20-deficient and oncogenically transformed cells with constitutive NF-κB activity. Taken together, these results suggest a novel mechanism by which brazilein exerts anti-IKK activity through inhibition of RIPK1 ubiquitination, highlighting its potential as a candidate for NF-κB-targeted cancer therapy.
期刊介绍:
Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.