OLÉ -在线学习模拟宇宙学

IF 5.9 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Sven Günther, Lennart Balkenhol, Christian Fidler, Ali Rida Khalife, Julien Lesgourgues, Markus R. Mosbech, Ravi Kumar Sharma
{"title":"OLÉ -在线学习模拟宇宙学","authors":"Sven Günther, Lennart Balkenhol, Christian Fidler, Ali Rida Khalife, Julien Lesgourgues, Markus R. Mosbech, Ravi Kumar Sharma","doi":"10.1088/1475-7516/2025/09/059","DOIUrl":null,"url":null,"abstract":"In this work, we present <monospace>OLÉ</monospace>, a new online learning emulator for use in cosmological inference. The emulator relies on Gaussian Processes and Principal Component Analysis for efficient data compression and fast evaluation. Moreover, <monospace>OLÉ</monospace> features an automatic error estimation for optimal active sampling and online learning.\nAll training data is computed on-the-fly, making the emulator applicable to any cosmological model or dataset.\nWe illustrate the emulator's performance on an array of cosmological models and data sets, showing significant improvements in efficiency over similar emulators without degrading accuracy compared to standard theory codes.\nWe find that <monospace>OLÉ</monospace> is able to considerably speed up the inference process, increasing the efficiency by a factor of 30-350, including data acquisition and training. Typically the runtime of the likelihood code becomes the computational bottleneck.\nFurthermore, <monospace>OLÉ</monospace> emulators are differentiable; we demonstrate that, together with the differentiable likelihoods available in the <monospace>candl</monospace> library, we can construct a gradient-based sampling method which yields an additional improvement factor of 4.\n<monospace>OLÉ</monospace> can be easily interfaced with the popular samplers <monospace>MontePython</monospace> and <monospace>Cobaya</monospace>, and the Einstein-Boltzmann solvers <monospace>CLASS</monospace> and <monospace>CAMB</monospace>.\n<monospace>OLÉ</monospace> is publicly available at <ext-link ext-link-type=\"uri\" xlink:href=\"https://github.com/svenguenther/OLE\" xlink:type=\"simple\">https://github.com/svenguenther/OLE</ext-link>.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"20 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OLÉ — Online Learning Emulation in cosmology\",\"authors\":\"Sven Günther, Lennart Balkenhol, Christian Fidler, Ali Rida Khalife, Julien Lesgourgues, Markus R. Mosbech, Ravi Kumar Sharma\",\"doi\":\"10.1088/1475-7516/2025/09/059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present <monospace>OLÉ</monospace>, a new online learning emulator for use in cosmological inference. The emulator relies on Gaussian Processes and Principal Component Analysis for efficient data compression and fast evaluation. Moreover, <monospace>OLÉ</monospace> features an automatic error estimation for optimal active sampling and online learning.\\nAll training data is computed on-the-fly, making the emulator applicable to any cosmological model or dataset.\\nWe illustrate the emulator's performance on an array of cosmological models and data sets, showing significant improvements in efficiency over similar emulators without degrading accuracy compared to standard theory codes.\\nWe find that <monospace>OLÉ</monospace> is able to considerably speed up the inference process, increasing the efficiency by a factor of 30-350, including data acquisition and training. Typically the runtime of the likelihood code becomes the computational bottleneck.\\nFurthermore, <monospace>OLÉ</monospace> emulators are differentiable; we demonstrate that, together with the differentiable likelihoods available in the <monospace>candl</monospace> library, we can construct a gradient-based sampling method which yields an additional improvement factor of 4.\\n<monospace>OLÉ</monospace> can be easily interfaced with the popular samplers <monospace>MontePython</monospace> and <monospace>Cobaya</monospace>, and the Einstein-Boltzmann solvers <monospace>CLASS</monospace> and <monospace>CAMB</monospace>.\\n<monospace>OLÉ</monospace> is publicly available at <ext-link ext-link-type=\\\"uri\\\" xlink:href=\\\"https://github.com/svenguenther/OLE\\\" xlink:type=\\\"simple\\\">https://github.com/svenguenther/OLE</ext-link>.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/09/059\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/09/059","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了OLÉ,一个新的在线学习模拟器,用于宇宙学推理。该仿真器利用高斯过程和主成分分析实现了高效的数据压缩和快速的评估。此外,OLÉ具有最优主动采样和在线学习的自动误差估计。所有的训练数据都是实时计算的,使模拟器适用于任何宇宙学模型或数据集。我们演示了仿真器在一系列宇宙学模型和数据集上的性能,与标准理论代码相比,与类似仿真器相比,效率有了显着提高,而精度没有降低。我们发现OLÉ能够大大加快推理过程,将效率提高30-350倍,包括数据采集和训练。通常,似然代码的运行时间成为计算瓶颈。此外,OLÉ仿真器是可微的;我们证明,与candl库中可用的可微似然一起,我们可以构建一个基于梯度的采样方法,该方法可以产生4的额外改进因子。OLÉ可以很容易地与流行的采样器MontePython和Cobaya接口,爱因斯坦-玻尔兹曼解算器CLASS和CAMB.OLÉ可以在https://github.com/svenguenther/OLE上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OLÉ — Online Learning Emulation in cosmology
In this work, we present OLÉ, a new online learning emulator for use in cosmological inference. The emulator relies on Gaussian Processes and Principal Component Analysis for efficient data compression and fast evaluation. Moreover, OLÉ features an automatic error estimation for optimal active sampling and online learning. All training data is computed on-the-fly, making the emulator applicable to any cosmological model or dataset. We illustrate the emulator's performance on an array of cosmological models and data sets, showing significant improvements in efficiency over similar emulators without degrading accuracy compared to standard theory codes. We find that OLÉ is able to considerably speed up the inference process, increasing the efficiency by a factor of 30-350, including data acquisition and training. Typically the runtime of the likelihood code becomes the computational bottleneck. Furthermore, OLÉ emulators are differentiable; we demonstrate that, together with the differentiable likelihoods available in the candl library, we can construct a gradient-based sampling method which yields an additional improvement factor of 4. OLÉ can be easily interfaced with the popular samplers MontePython and Cobaya, and the Einstein-Boltzmann solvers CLASS and CAMB. OLÉ is publicly available at https://github.com/svenguenther/OLE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信