基于高效光谱特征提取的分层色彩恒常性。

IF 13.7
Dong-Keun Han;Dong-Hoon Kang;Jong-Ok Kim
{"title":"基于高效光谱特征提取的分层色彩恒常性。","authors":"Dong-Keun Han;Dong-Hoon Kang;Jong-Ok Kim","doi":"10.1109/TIP.2025.3607631","DOIUrl":null,"url":null,"abstract":"This paper presents an empirical investigation into illuminant estimation using multi-spectral images. Our study emphasizes two key contributions: (1) the utilization of the estimated multi-spectral images and (2) the incorporation of a hierarchical structure. Firstly, exploiting multi-spectral images proves to have a positive influence on illuminant estimation, particularly in scenarios characterized by monochromatic images where conventional color constancy methods face challenges. Our experimental results vividly illustrate the effectiveness of leveraging spectral information in enhancing illuminant estimation. Secondly, the adoption of a hierarchical structure stems from the need for spatial invariance in the task of estimating a global illuminant. To further enhance the performance of the hierarchical structure, we employ a contrastive loss applied to different scaled outputs. This approach demonstrates remarkable effectiveness on our custom dataset, showcasing superior performance compared to the existing methods. In addition, we extend the evaluation to the widely recognized NUS-8 dataset, where the proposed method showcases a notable 26.7% relative improvement over the previous state-of-the-art methods.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"6029-6040"},"PeriodicalIF":13.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Color Constancy via Efficient Spectral Feature Extraction\",\"authors\":\"Dong-Keun Han;Dong-Hoon Kang;Jong-Ok Kim\",\"doi\":\"10.1109/TIP.2025.3607631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an empirical investigation into illuminant estimation using multi-spectral images. Our study emphasizes two key contributions: (1) the utilization of the estimated multi-spectral images and (2) the incorporation of a hierarchical structure. Firstly, exploiting multi-spectral images proves to have a positive influence on illuminant estimation, particularly in scenarios characterized by monochromatic images where conventional color constancy methods face challenges. Our experimental results vividly illustrate the effectiveness of leveraging spectral information in enhancing illuminant estimation. Secondly, the adoption of a hierarchical structure stems from the need for spatial invariance in the task of estimating a global illuminant. To further enhance the performance of the hierarchical structure, we employ a contrastive loss applied to different scaled outputs. This approach demonstrates remarkable effectiveness on our custom dataset, showcasing superior performance compared to the existing methods. In addition, we extend the evaluation to the widely recognized NUS-8 dataset, where the proposed method showcases a notable 26.7% relative improvement over the previous state-of-the-art methods.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"6029-6040\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11173208/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11173208/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对基于多光谱图像的光源估计进行了实证研究。我们的研究强调了两个关键贡献:(1)利用估计的多光谱图像和(2)结合层次结构。首先,利用多光谱图像被证明对光源估计有积极的影响,特别是在以单色图像为特征的场景中,传统的颜色常数方法面临挑战。我们的实验结果生动地说明了利用光谱信息增强光源估计的有效性。其次,采用层次结构源于估计全局光源任务中对空间不变性的需要。为了进一步提高分层结构的性能,我们对不同比例的输出采用了对比损失。这种方法在我们的自定义数据集上显示了显著的有效性,与现有方法相比显示了优越的性能。此外,我们将评估扩展到广泛认可的NUS-8数据集,其中所提出的方法比以前最先进的方法显示出26.7%的显着相对改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Color Constancy via Efficient Spectral Feature Extraction
This paper presents an empirical investigation into illuminant estimation using multi-spectral images. Our study emphasizes two key contributions: (1) the utilization of the estimated multi-spectral images and (2) the incorporation of a hierarchical structure. Firstly, exploiting multi-spectral images proves to have a positive influence on illuminant estimation, particularly in scenarios characterized by monochromatic images where conventional color constancy methods face challenges. Our experimental results vividly illustrate the effectiveness of leveraging spectral information in enhancing illuminant estimation. Secondly, the adoption of a hierarchical structure stems from the need for spatial invariance in the task of estimating a global illuminant. To further enhance the performance of the hierarchical structure, we employ a contrastive loss applied to different scaled outputs. This approach demonstrates remarkable effectiveness on our custom dataset, showcasing superior performance compared to the existing methods. In addition, we extend the evaluation to the widely recognized NUS-8 dataset, where the proposed method showcases a notable 26.7% relative improvement over the previous state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信