共价有机框架锚定单原子Pt用于三相界面辅助光催化全面水分解。

IF 16.9
Ting-Ting Sun, Hao Zhang, Ya Wang, Nan-Nan Zhang, Lu-Hua Shao, Hong Dong, Feng-Ming Zhang
{"title":"共价有机框架锚定单原子Pt用于三相界面辅助光催化全面水分解。","authors":"Ting-Ting Sun, Hao Zhang, Ya Wang, Nan-Nan Zhang, Lu-Hua Shao, Hong Dong, Feng-Ming Zhang","doi":"10.1002/anie.202515397","DOIUrl":null,"url":null,"abstract":"<p><p>Covalent organic frameworks (COFs) are promising photocatalysts for overall water splitting (OWS) due to their high crystallinity, porosity and tunable structures. However, current COF-based systems rely on cocatalysts, which suffer from low atomic utilization and poor distribution due to aggregation. In addition, the oxygen reduction reaction (ORR) backward reaction severely undermines catalytic efficiency and stability in long time reaction. Herein, we present a strategy that combines atomically dispersed Pt sites anchored via N/O coordination within triazine-based COFs and a gas-liquid-solid three-phase interface-assisted photocatalytic system to enhance both performance and durability. As a result, the Pt-TBPyT-COF achieves superior OWS performance with H<sub>2</sub> and O<sub>2</sub> evolution rates of 469.8 and 234.9 µmol·g<sup>-1</sup>·h<sup>-1</sup>, respectively, and an apparent quantum yield of 8.91% at 450 nm. Notably, the OWS via gas-liquid-solid three-phase interface-assisted method effectively suppresses ORR backward reaction and reaches average rates as high as 568.7 and 284.3 µmol·g<sup>-1</sup>·h<sup>-1</sup> for H<sub>2</sub> and O<sub>2</sub> in 5 h, respectively, and maintained stable photocatalytic activity over a 30 h continuous reaction. Further, density functional theory calculations and in situ experiments reveal that the single-atoms Pt coordination accelerates *H desorption, while the triazine units in COFs benefits charge separation and reduced energy barriers of OER rate-determining step.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202515397"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covalent Organic Frameworks Anchoring Single-Atom Pt for Three-Phase Interface-Assisted Photocatalytic Overall Water Splitting.\",\"authors\":\"Ting-Ting Sun, Hao Zhang, Ya Wang, Nan-Nan Zhang, Lu-Hua Shao, Hong Dong, Feng-Ming Zhang\",\"doi\":\"10.1002/anie.202515397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Covalent organic frameworks (COFs) are promising photocatalysts for overall water splitting (OWS) due to their high crystallinity, porosity and tunable structures. However, current COF-based systems rely on cocatalysts, which suffer from low atomic utilization and poor distribution due to aggregation. In addition, the oxygen reduction reaction (ORR) backward reaction severely undermines catalytic efficiency and stability in long time reaction. Herein, we present a strategy that combines atomically dispersed Pt sites anchored via N/O coordination within triazine-based COFs and a gas-liquid-solid three-phase interface-assisted photocatalytic system to enhance both performance and durability. As a result, the Pt-TBPyT-COF achieves superior OWS performance with H<sub>2</sub> and O<sub>2</sub> evolution rates of 469.8 and 234.9 µmol·g<sup>-1</sup>·h<sup>-1</sup>, respectively, and an apparent quantum yield of 8.91% at 450 nm. Notably, the OWS via gas-liquid-solid three-phase interface-assisted method effectively suppresses ORR backward reaction and reaches average rates as high as 568.7 and 284.3 µmol·g<sup>-1</sup>·h<sup>-1</sup> for H<sub>2</sub> and O<sub>2</sub> in 5 h, respectively, and maintained stable photocatalytic activity over a 30 h continuous reaction. Further, density functional theory calculations and in situ experiments reveal that the single-atoms Pt coordination accelerates *H desorption, while the triazine units in COFs benefits charge separation and reduced energy barriers of OER rate-determining step.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202515397\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202515397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202515397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

共价有机骨架(COFs)由于其高结晶度、孔隙度和结构可调等特点,是一种很有前途的光催化剂。然而,目前基于cof的体系依赖于助催化剂,而助催化剂存在原子利用率低和聚集性差的问题。此外,氧还原反应(ORR)逆向反应严重影响了长时间反应的催化效率和稳定性。在此,我们提出了一种策略,结合了三嗪基COFs中通过N/O配位锚定的原子分散Pt位点和气-液-固三相界面辅助光催化系统,以提高性能和耐久性。结果表明,Pt-TBPyT-COF具有优异的OWS性能,H2和O2的析出速率分别为469.8µmol·g-1和234.9µmol·g-1·h-1, 450 nm处的表观量子产率为8.91%。值得注意的是,通过气-液-固三相界面辅助方法制备的OWS有效抑制了ORR的逆向反应,H2和O2在5 h内的平均反应速率分别高达568.7和284.3µmol·g-1·h-1,并在30 h的连续反应中保持稳定的光催化活性。此外,密度泛函理论计算和原位实验表明,单原子Pt配位加速了*H的脱附,而COFs中的三嗪单元有利于电荷分离,降低了OER速率决定步骤的能量势垒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Covalent Organic Frameworks Anchoring Single-Atom Pt for Three-Phase Interface-Assisted Photocatalytic Overall Water Splitting.

Covalent Organic Frameworks Anchoring Single-Atom Pt for Three-Phase Interface-Assisted Photocatalytic Overall Water Splitting.

Covalent organic frameworks (COFs) are promising photocatalysts for overall water splitting (OWS) due to their high crystallinity, porosity and tunable structures. However, current COF-based systems rely on cocatalysts, which suffer from low atomic utilization and poor distribution due to aggregation. In addition, the oxygen reduction reaction (ORR) backward reaction severely undermines catalytic efficiency and stability in long time reaction. Herein, we present a strategy that combines atomically dispersed Pt sites anchored via N/O coordination within triazine-based COFs and a gas-liquid-solid three-phase interface-assisted photocatalytic system to enhance both performance and durability. As a result, the Pt-TBPyT-COF achieves superior OWS performance with H2 and O2 evolution rates of 469.8 and 234.9 µmol·g-1·h-1, respectively, and an apparent quantum yield of 8.91% at 450 nm. Notably, the OWS via gas-liquid-solid three-phase interface-assisted method effectively suppresses ORR backward reaction and reaches average rates as high as 568.7 and 284.3 µmol·g-1·h-1 for H2 and O2 in 5 h, respectively, and maintained stable photocatalytic activity over a 30 h continuous reaction. Further, density functional theory calculations and in situ experiments reveal that the single-atoms Pt coordination accelerates *H desorption, while the triazine units in COFs benefits charge separation and reduced energy barriers of OER rate-determining step.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信