无生成先验再训练的扩散逆问题求解器的自动调谐。

ArXiv Pub Date : 2025-09-11
Yaşar Utku Alçalar, Junno Yun, Mehmet Akçakaya
{"title":"无生成先验再训练的扩散逆问题求解器的自动调谐。","authors":"Yaşar Utku Alçalar, Junno Yun, Mehmet Akçakaya","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion/score-based models have recently emerged as powerful generative priors for solving inverse problems, including accelerated MRI reconstruction. While their flexibility allows decoupling the measurement model from the learned prior, their performance heavily depends on carefully tuned data fidelity weights, especially under fast sampling schedules with few denoising steps. Existing approaches often rely on heuristics or fixed weights, which fail to generalize across varying measurement conditions and irregular timestep schedules. In this work, we propose Zero-shot Adaptive Diffusion Sampling (ZADS), a test-time optimization method that adaptively tunes fidelity weights across arbitrary noise schedules without requiring retraining of the diffusion prior. ZADS treats the denoising process as a fixed unrolled sampler and optimizes fidelity weights in a self-supervised manner using only undersampled measurements. Experiments on the fastMRI knee dataset demonstrate that ZADS consistently outperforms both traditional compressed sensing and recent diffusion-based methods, showcasing its ability to deliver high-fidelity reconstructions across varying noise schedules and acquisition settings.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440065/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated Tuning for Diffusion Inverse Problem Solvers without Generative Prior Retraining.\",\"authors\":\"Yaşar Utku Alçalar, Junno Yun, Mehmet Akçakaya\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffusion/score-based models have recently emerged as powerful generative priors for solving inverse problems, including accelerated MRI reconstruction. While their flexibility allows decoupling the measurement model from the learned prior, their performance heavily depends on carefully tuned data fidelity weights, especially under fast sampling schedules with few denoising steps. Existing approaches often rely on heuristics or fixed weights, which fail to generalize across varying measurement conditions and irregular timestep schedules. In this work, we propose Zero-shot Adaptive Diffusion Sampling (ZADS), a test-time optimization method that adaptively tunes fidelity weights across arbitrary noise schedules without requiring retraining of the diffusion prior. ZADS treats the denoising process as a fixed unrolled sampler and optimizes fidelity weights in a self-supervised manner using only undersampled measurements. Experiments on the fastMRI knee dataset demonstrate that ZADS consistently outperforms both traditional compressed sensing and recent diffusion-based methods, showcasing its ability to deliver high-fidelity reconstructions across varying noise schedules and acquisition settings.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440065/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于扩散/分数的模型最近成为解决逆问题的强大生成先验,包括加速MRI重建。虽然它们的灵活性允许将测量模型与学习到的先验解耦,但它们的性能在很大程度上取决于精心调整的数据保真度权重,特别是在快速采样计划和很少的去噪步骤下。现有的方法通常依赖于启发式方法或固定权重,这些方法不能泛化到不同的测量条件和不规则的时间步程。在这项工作中,我们提出了零射击自适应扩散采样(ZADS),这是一种测试时间优化方法,可以自适应地在任意噪声调度中调整保真度权重,而无需对扩散先验进行重新训练。ZADS将去噪过程视为固定的展开采样器,并仅使用欠采样测量以自监督的方式优化保真度权重。在fastMRI膝关节数据集上的实验表明,ZADS始终优于传统的压缩感知和最近基于扩散的方法,展示了其在不同噪声调度和采集设置下提供高保真重建的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Tuning for Diffusion Inverse Problem Solvers without Generative Prior Retraining.

Diffusion/score-based models have recently emerged as powerful generative priors for solving inverse problems, including accelerated MRI reconstruction. While their flexibility allows decoupling the measurement model from the learned prior, their performance heavily depends on carefully tuned data fidelity weights, especially under fast sampling schedules with few denoising steps. Existing approaches often rely on heuristics or fixed weights, which fail to generalize across varying measurement conditions and irregular timestep schedules. In this work, we propose Zero-shot Adaptive Diffusion Sampling (ZADS), a test-time optimization method that adaptively tunes fidelity weights across arbitrary noise schedules without requiring retraining of the diffusion prior. ZADS treats the denoising process as a fixed unrolled sampler and optimizes fidelity weights in a self-supervised manner using only undersampled measurements. Experiments on the fastMRI knee dataset demonstrate that ZADS consistently outperforms both traditional compressed sensing and recent diffusion-based methods, showcasing its ability to deliver high-fidelity reconstructions across varying noise schedules and acquisition settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信