DCEM-TCRCN:一种利用可穿戴物联网设备和深度学习进行抑郁症检测的创新方法。

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Xinfeng Xiao, Shijun Li, Wei Yu
{"title":"DCEM-TCRCN:一种利用可穿戴物联网设备和深度学习进行抑郁症检测的创新方法。","authors":"Xinfeng Xiao, Shijun Li, Wei Yu","doi":"10.1007/s11548-025-03479-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Depression is a psychological disorder that has vital implications for society's health. So, it is important to develop a model that aids in effective and accurate depression diagnosis. This paper proposes a Dynamic Convolutional Encoder Model based on a Temporal Circular Residual Convolutional Network (DCEM-TCRCN), a novel approach for diagnosing depression using wearable Internet-of-Things sensors.</p><p><strong>Methods: </strong>DCEM integrates Mobile Inverted Bottleneck Convolution (MBConv) blocks with Dynamic Convolution (DConv) to maximize feature extraction and allow the system to react to input changes and effectively extract depression-correlated patterns. The TCRCN model improves the performance using circular dilated convolution to address long-range temporal relations and eliminate boundary effects. Temporal attention mechanisms deal with important patterns in the data, while weight normalization, GELU activation, and dropout assure stability, regularization, and convergence.</p><p><strong>Results: </strong>The proposed system applies physiological information acquired from wearable sensors, including heart rate variability and electrodermal activity. Preprocessing tasks like one-hot encoding and data normalization normalize inputs to enable successful feature extraction. Dual fully connected layers perform classifications using pooled learned representations to make accurate predictions regarding depression states.</p><p><strong>Conclusion: </strong>Experimental analysis on the Depression Dataset confirmed the improved performance of the DCEM-TCRCN model with an accuracy of 98.88%, precision of 97.76%, recall of 98.21%, and a Cohen-Kappa score of 97.99%. The findings confirm the efficacy, trustworthiness, and stability of the model, making it usable for real-time psychological health monitoring.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DCEM-TCRCN: an innovative approach to depression detection using wearable IoT devices and deep learning.\",\"authors\":\"Xinfeng Xiao, Shijun Li, Wei Yu\",\"doi\":\"10.1007/s11548-025-03479-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Depression is a psychological disorder that has vital implications for society's health. So, it is important to develop a model that aids in effective and accurate depression diagnosis. This paper proposes a Dynamic Convolutional Encoder Model based on a Temporal Circular Residual Convolutional Network (DCEM-TCRCN), a novel approach for diagnosing depression using wearable Internet-of-Things sensors.</p><p><strong>Methods: </strong>DCEM integrates Mobile Inverted Bottleneck Convolution (MBConv) blocks with Dynamic Convolution (DConv) to maximize feature extraction and allow the system to react to input changes and effectively extract depression-correlated patterns. The TCRCN model improves the performance using circular dilated convolution to address long-range temporal relations and eliminate boundary effects. Temporal attention mechanisms deal with important patterns in the data, while weight normalization, GELU activation, and dropout assure stability, regularization, and convergence.</p><p><strong>Results: </strong>The proposed system applies physiological information acquired from wearable sensors, including heart rate variability and electrodermal activity. Preprocessing tasks like one-hot encoding and data normalization normalize inputs to enable successful feature extraction. Dual fully connected layers perform classifications using pooled learned representations to make accurate predictions regarding depression states.</p><p><strong>Conclusion: </strong>Experimental analysis on the Depression Dataset confirmed the improved performance of the DCEM-TCRCN model with an accuracy of 98.88%, precision of 97.76%, recall of 98.21%, and a Cohen-Kappa score of 97.99%. The findings confirm the efficacy, trustworthiness, and stability of the model, making it usable for real-time psychological health monitoring.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03479-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03479-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:抑郁症是一种对社会健康有着重要影响的心理障碍。因此,开发一个有助于有效和准确诊断抑郁症的模型是很重要的。本文提出了一种基于时间圆残差卷积网络(DCEM-TCRCN)的动态卷积编码器模型,这是一种利用可穿戴物联网传感器诊断抑郁症的新方法。方法:DCEM将移动倒瓶颈卷积(MBConv)块与动态卷积(DConv)相结合,最大限度地提取特征,使系统能够对输入变化做出反应,有效提取抑郁相关模式。TCRCN模型使用圆形扩展卷积来处理长时间关系并消除边界效应,从而提高了性能。时间注意机制处理数据中的重要模式,而权重归一化、GELU激活和dropout确保稳定性、正则化和收敛性。结果:该系统应用了从可穿戴传感器获取的生理信息,包括心率变异性和皮肤电活动。预处理任务,如单热编码和数据规范化,使输入规范化,以实现成功的特征提取。双全连接层使用集合学习表征进行分类,以准确预测抑郁状态。结论:在抑郁症数据集上的实验分析证实,DCEM-TCRCN模型的准确率为98.88%,精密度为97.76%,召回率为98.21%,Cohen-Kappa评分为97.99%。研究结果证实了该模型的有效性、可靠性和稳定性,使其可用于实时心理健康监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DCEM-TCRCN: an innovative approach to depression detection using wearable IoT devices and deep learning.

Purpose: Depression is a psychological disorder that has vital implications for society's health. So, it is important to develop a model that aids in effective and accurate depression diagnosis. This paper proposes a Dynamic Convolutional Encoder Model based on a Temporal Circular Residual Convolutional Network (DCEM-TCRCN), a novel approach for diagnosing depression using wearable Internet-of-Things sensors.

Methods: DCEM integrates Mobile Inverted Bottleneck Convolution (MBConv) blocks with Dynamic Convolution (DConv) to maximize feature extraction and allow the system to react to input changes and effectively extract depression-correlated patterns. The TCRCN model improves the performance using circular dilated convolution to address long-range temporal relations and eliminate boundary effects. Temporal attention mechanisms deal with important patterns in the data, while weight normalization, GELU activation, and dropout assure stability, regularization, and convergence.

Results: The proposed system applies physiological information acquired from wearable sensors, including heart rate variability and electrodermal activity. Preprocessing tasks like one-hot encoding and data normalization normalize inputs to enable successful feature extraction. Dual fully connected layers perform classifications using pooled learned representations to make accurate predictions regarding depression states.

Conclusion: Experimental analysis on the Depression Dataset confirmed the improved performance of the DCEM-TCRCN model with an accuracy of 98.88%, precision of 97.76%, recall of 98.21%, and a Cohen-Kappa score of 97.99%. The findings confirm the efficacy, trustworthiness, and stability of the model, making it usable for real-time psychological health monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信