Shuran Huo, Wuwen Zhang, Yingnan Wang, Jing Qi, Yang Wang, Chunying Bai
{"title":"深度学习整合内镜超声特征和血清数据揭示LTB4是ESCC的诊断和治疗靶点。","authors":"Shuran Huo, Wuwen Zhang, Yingnan Wang, Jing Qi, Yang Wang, Chunying Bai","doi":"10.1177/10849785251380368","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Early diagnosis and accurate prediction of treatment response in esophageal squamous cell carcinoma (ESCC) remain major clinical challenges due to the lack of reliable and noninvasive biomarkers. Recently, artificial intelligence-driven endoscopic ultrasound image analysis has shown great promise in revealing genomic features associated with imaging phenotypes. <b><i>Methods:</i></b> A prospective study of 115 patients with ESCC was conducted. Deep features were extracted from endoscopic ultrasound using a ResNet50 convolutional neural network. Important features shared across three machine learning models (NN, GLM, DT) were used to construct an image-derived signature. Plasma levels of leukotriene B4 (<i>LTB4</i>) and other inflammatory markers were measured using enzyme-linked immunosorbent assay. Correlations between signature and inflammation markers were analyzed, followed by logistic regression and subgroup analyses. <b><i>Results:</i></b> The endoscopic ultrasound image-derived signature, generated using deep learning algorithms, effectively distinguished esophageal cancer from normal esophageal tissue. Among all inflammatory markers, <i>LTB4</i> exhibited the strongest negative correlation with the image signature and showed significantly higher expression in the healthy control group. Multivariate logistic regression analysis identified <i>LTB4</i> as an independent risk factor for ESCC (odds ratio = 1.74, <i>p</i> = 0.037). Furthermore, <i>LTB4</i> expression was significantly associated with patient sex, age, and chemotherapy response. Notably, higher <i>LTB4</i> levels were linked to an increased likelihood of achieving a favorable therapeutic response. <b><i>Conclusions:</i></b> This study demonstrates that deep learning-derived endoscopic ultrasound image features can effectively distinguish ESCC from normal esophageal tissue. By integrating image features with serological data, the authors identified <i>LTB4</i> as a key inflammation-related biomarker with significant diagnostic and therapeutic predictive value.</p>","PeriodicalId":55277,"journal":{"name":"Cancer Biotherapy and Radiopharmaceuticals","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Integration of Endoscopic Ultrasound Features and Serum Data Reveals <i>LTB4</i> as a Diagnostic and Therapeutic Target in ESCC.\",\"authors\":\"Shuran Huo, Wuwen Zhang, Yingnan Wang, Jing Qi, Yang Wang, Chunying Bai\",\"doi\":\"10.1177/10849785251380368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Early diagnosis and accurate prediction of treatment response in esophageal squamous cell carcinoma (ESCC) remain major clinical challenges due to the lack of reliable and noninvasive biomarkers. Recently, artificial intelligence-driven endoscopic ultrasound image analysis has shown great promise in revealing genomic features associated with imaging phenotypes. <b><i>Methods:</i></b> A prospective study of 115 patients with ESCC was conducted. Deep features were extracted from endoscopic ultrasound using a ResNet50 convolutional neural network. Important features shared across three machine learning models (NN, GLM, DT) were used to construct an image-derived signature. Plasma levels of leukotriene B4 (<i>LTB4</i>) and other inflammatory markers were measured using enzyme-linked immunosorbent assay. Correlations between signature and inflammation markers were analyzed, followed by logistic regression and subgroup analyses. <b><i>Results:</i></b> The endoscopic ultrasound image-derived signature, generated using deep learning algorithms, effectively distinguished esophageal cancer from normal esophageal tissue. Among all inflammatory markers, <i>LTB4</i> exhibited the strongest negative correlation with the image signature and showed significantly higher expression in the healthy control group. Multivariate logistic regression analysis identified <i>LTB4</i> as an independent risk factor for ESCC (odds ratio = 1.74, <i>p</i> = 0.037). Furthermore, <i>LTB4</i> expression was significantly associated with patient sex, age, and chemotherapy response. Notably, higher <i>LTB4</i> levels were linked to an increased likelihood of achieving a favorable therapeutic response. <b><i>Conclusions:</i></b> This study demonstrates that deep learning-derived endoscopic ultrasound image features can effectively distinguish ESCC from normal esophageal tissue. By integrating image features with serological data, the authors identified <i>LTB4</i> as a key inflammation-related biomarker with significant diagnostic and therapeutic predictive value.</p>\",\"PeriodicalId\":55277,\"journal\":{\"name\":\"Cancer Biotherapy and Radiopharmaceuticals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biotherapy and Radiopharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10849785251380368\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biotherapy and Radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10849785251380368","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Deep Learning Integration of Endoscopic Ultrasound Features and Serum Data Reveals LTB4 as a Diagnostic and Therapeutic Target in ESCC.
Background: Early diagnosis and accurate prediction of treatment response in esophageal squamous cell carcinoma (ESCC) remain major clinical challenges due to the lack of reliable and noninvasive biomarkers. Recently, artificial intelligence-driven endoscopic ultrasound image analysis has shown great promise in revealing genomic features associated with imaging phenotypes. Methods: A prospective study of 115 patients with ESCC was conducted. Deep features were extracted from endoscopic ultrasound using a ResNet50 convolutional neural network. Important features shared across three machine learning models (NN, GLM, DT) were used to construct an image-derived signature. Plasma levels of leukotriene B4 (LTB4) and other inflammatory markers were measured using enzyme-linked immunosorbent assay. Correlations between signature and inflammation markers were analyzed, followed by logistic regression and subgroup analyses. Results: The endoscopic ultrasound image-derived signature, generated using deep learning algorithms, effectively distinguished esophageal cancer from normal esophageal tissue. Among all inflammatory markers, LTB4 exhibited the strongest negative correlation with the image signature and showed significantly higher expression in the healthy control group. Multivariate logistic regression analysis identified LTB4 as an independent risk factor for ESCC (odds ratio = 1.74, p = 0.037). Furthermore, LTB4 expression was significantly associated with patient sex, age, and chemotherapy response. Notably, higher LTB4 levels were linked to an increased likelihood of achieving a favorable therapeutic response. Conclusions: This study demonstrates that deep learning-derived endoscopic ultrasound image features can effectively distinguish ESCC from normal esophageal tissue. By integrating image features with serological data, the authors identified LTB4 as a key inflammation-related biomarker with significant diagnostic and therapeutic predictive value.
期刊介绍:
Cancer Biotherapy and Radiopharmaceuticals is the established peer-reviewed journal, with over 25 years of cutting-edge content on innovative therapeutic investigations to ultimately improve cancer management. It is the only journal with the specific focus of cancer biotherapy and is inclusive of monoclonal antibodies, cytokine therapy, cancer gene therapy, cell-based therapies, and other forms of immunotherapies.
The Journal includes extensive reporting on advancements in radioimmunotherapy, and the use of radiopharmaceuticals and radiolabeled peptides for the development of new cancer treatments.