Doğacan Yücel, Natalia Ferreira de Araujo, Fernando Souza-Neto, Calvin Smith, Wei-Han Lin, Andrea A Torniainen, Mikayla L Hall, DeWayne Townsend, Brenda M Ogle, Jop H van Berlo
{"title":"Septin4调节压力过载后的心脏纤维化","authors":"Doğacan Yücel, Natalia Ferreira de Araujo, Fernando Souza-Neto, Calvin Smith, Wei-Han Lin, Andrea A Torniainen, Mikayla L Hall, DeWayne Townsend, Brenda M Ogle, Jop H van Berlo","doi":"10.1161/CIRCRESAHA.125.326758","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In response to cardiac injury the mammalian heart undergoes ventricular remodeling to maintain cardiac function. These changes are initially considered compensatory, but eventually lead to increased cardiomyocyte apoptosis, reduced cardiac function and fibrosis which are important contributors to the development of heart failure. The small GTPase Sept4 (Septin4) has previously been implicated in the regulation of regeneration and apoptosis in several organs. However, the role of Sept4 in regulating the response of the heart to stress is unknown.</p><p><strong>Methods: </strong>Ten-week-old wild-type (WT) and Sept4 knockout mice were subjected to transverse aortic constriction to induce cardiac injury. Genotype-dependent differences were investigated at baseline and at 1- and 4-week postinjury time points. To definitively establish the fibroblast-specific cardioprotective effects of Sept4, we generated a fibroblast-specific Sept4 conditional knockout model.</p><p><strong>Results: </strong>Under homeostatic conditions Sept4 knockout mice showed normal cardiac function comparable with WT controls. In response to transverse aortic constriction, WT mice developed reduced cardiac function and heart failure, accompanied by an increase in cardiomyocyte apoptosis. In contrast, knockout mice were protected against injury with maintenance of normal cardiac function and reduced levels of cardiomyocyte apoptosis. Both at baseline and after transverse aortic constriction, knockout hearts exhibited decreased levels of cardiac extracellular matrix deposition and fibrosis compared with WT controls. In support of these data, the level of myofibroblast activation was lower after injury in knockout mice. Furthermore, the knockout group showed higher levels of cardiac compliance and improved diastolic function compared with WT controls. Mechanistically, we identified reduced fibrosis development due to alterations in calcineurin-dependent signaling in fibroblasts. These results were further verified in fibroblast-specific conditional Sept4 knockout mice subjected to cardiac pressure overload.</p><p><strong>Conclusions: </strong>We identified Sept4 as an important regulator of extracellular matrix remodeling in the heart. Sept4 controls the conversion of fibroblast to myofibroblast through calcineurin-dependent mechanisms.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"1117-1132"},"PeriodicalIF":16.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466173/pdf/","citationCount":"0","resultStr":"{\"title\":\"Septin4 Regulates Cardiac Fibrosis After Pressure Overload.\",\"authors\":\"Doğacan Yücel, Natalia Ferreira de Araujo, Fernando Souza-Neto, Calvin Smith, Wei-Han Lin, Andrea A Torniainen, Mikayla L Hall, DeWayne Townsend, Brenda M Ogle, Jop H van Berlo\",\"doi\":\"10.1161/CIRCRESAHA.125.326758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In response to cardiac injury the mammalian heart undergoes ventricular remodeling to maintain cardiac function. These changes are initially considered compensatory, but eventually lead to increased cardiomyocyte apoptosis, reduced cardiac function and fibrosis which are important contributors to the development of heart failure. The small GTPase Sept4 (Septin4) has previously been implicated in the regulation of regeneration and apoptosis in several organs. However, the role of Sept4 in regulating the response of the heart to stress is unknown.</p><p><strong>Methods: </strong>Ten-week-old wild-type (WT) and Sept4 knockout mice were subjected to transverse aortic constriction to induce cardiac injury. Genotype-dependent differences were investigated at baseline and at 1- and 4-week postinjury time points. To definitively establish the fibroblast-specific cardioprotective effects of Sept4, we generated a fibroblast-specific Sept4 conditional knockout model.</p><p><strong>Results: </strong>Under homeostatic conditions Sept4 knockout mice showed normal cardiac function comparable with WT controls. In response to transverse aortic constriction, WT mice developed reduced cardiac function and heart failure, accompanied by an increase in cardiomyocyte apoptosis. In contrast, knockout mice were protected against injury with maintenance of normal cardiac function and reduced levels of cardiomyocyte apoptosis. Both at baseline and after transverse aortic constriction, knockout hearts exhibited decreased levels of cardiac extracellular matrix deposition and fibrosis compared with WT controls. In support of these data, the level of myofibroblast activation was lower after injury in knockout mice. Furthermore, the knockout group showed higher levels of cardiac compliance and improved diastolic function compared with WT controls. Mechanistically, we identified reduced fibrosis development due to alterations in calcineurin-dependent signaling in fibroblasts. These results were further verified in fibroblast-specific conditional Sept4 knockout mice subjected to cardiac pressure overload.</p><p><strong>Conclusions: </strong>We identified Sept4 as an important regulator of extracellular matrix remodeling in the heart. Sept4 controls the conversion of fibroblast to myofibroblast through calcineurin-dependent mechanisms.</p>\",\"PeriodicalId\":10147,\"journal\":{\"name\":\"Circulation research\",\"volume\":\" \",\"pages\":\"1117-1132\"},\"PeriodicalIF\":16.2000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466173/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCRESAHA.125.326758\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.125.326758","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Septin4 Regulates Cardiac Fibrosis After Pressure Overload.
Background: In response to cardiac injury the mammalian heart undergoes ventricular remodeling to maintain cardiac function. These changes are initially considered compensatory, but eventually lead to increased cardiomyocyte apoptosis, reduced cardiac function and fibrosis which are important contributors to the development of heart failure. The small GTPase Sept4 (Septin4) has previously been implicated in the regulation of regeneration and apoptosis in several organs. However, the role of Sept4 in regulating the response of the heart to stress is unknown.
Methods: Ten-week-old wild-type (WT) and Sept4 knockout mice were subjected to transverse aortic constriction to induce cardiac injury. Genotype-dependent differences were investigated at baseline and at 1- and 4-week postinjury time points. To definitively establish the fibroblast-specific cardioprotective effects of Sept4, we generated a fibroblast-specific Sept4 conditional knockout model.
Results: Under homeostatic conditions Sept4 knockout mice showed normal cardiac function comparable with WT controls. In response to transverse aortic constriction, WT mice developed reduced cardiac function and heart failure, accompanied by an increase in cardiomyocyte apoptosis. In contrast, knockout mice were protected against injury with maintenance of normal cardiac function and reduced levels of cardiomyocyte apoptosis. Both at baseline and after transverse aortic constriction, knockout hearts exhibited decreased levels of cardiac extracellular matrix deposition and fibrosis compared with WT controls. In support of these data, the level of myofibroblast activation was lower after injury in knockout mice. Furthermore, the knockout group showed higher levels of cardiac compliance and improved diastolic function compared with WT controls. Mechanistically, we identified reduced fibrosis development due to alterations in calcineurin-dependent signaling in fibroblasts. These results were further verified in fibroblast-specific conditional Sept4 knockout mice subjected to cardiac pressure overload.
Conclusions: We identified Sept4 as an important regulator of extracellular matrix remodeling in the heart. Sept4 controls the conversion of fibroblast to myofibroblast through calcineurin-dependent mechanisms.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.