Mereena George Ushakumary, William B Chrisler, Gautam Bandyopadhyay, Heidie L Huyck, Brittney L Gorman, Naina Almazbekovna Beishembieva, Ariana Pitonzo, Zhenli J Lai, Thomas L Fillmore, Isaac Kwame Attah, Gail Deutsch, Jeffrey M Purkerson, Andrew M Dylag, Ravi S Misra, James P Carson, Joshua N Adkins, Gloria Pryhuber, Geremy C Clair
{"title":"分拣细胞蛋白质组学揭示了at1相关的上皮角化表型,并提示人支气管肺发育不良中内皮氧化还原失衡。","authors":"Mereena George Ushakumary, William B Chrisler, Gautam Bandyopadhyay, Heidie L Huyck, Brittney L Gorman, Naina Almazbekovna Beishembieva, Ariana Pitonzo, Zhenli J Lai, Thomas L Fillmore, Isaac Kwame Attah, Gail Deutsch, Jeffrey M Purkerson, Andrew M Dylag, Ravi S Misra, James P Carson, Joshua N Adkins, Gloria Pryhuber, Geremy C Clair","doi":"10.1152/ajplung.00098.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Bronchopulmonary dysplasia (BPD) is a neonatal lung disease characterized by inflammation and scarring leading to long-term tissue damage. Previous whole tissue proteomics identified BPD-specific proteome changes and cell type shifts. Little is known about the proteome-level changes within specific cell populations in disease. Here, we sorted epithelial (EPI) and endothelial (ENDO) cell populations based on their differential surface markers from normal and BPD human lungs. Using a low-input compatible sample preparation method (MicroPOT), proteins were extracted and digested into peptides and subjected to Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) proteome analysis. Of the 4,970 proteins detected, 293 were modulated in abundance or detection in the EPI population and 422 were modulated in ENDO cells. Modulation of proteins associated with actin-cytoskeletal function such as SCEL, LMO7, and TBA1B were observed in the BPD EPIs. Using confocal imaging and analysis, we validated the presence of aberrant multilayer-like structures comprising SCEL and LMO7, known to be associated with epidermal cornification, in the human BPD lung. This is the first report of accumulation of cornification-associated proteins in BPD. Their localization in the alveolar parenchyma, primarily associated with alveolar type 1 (AT1) cells, suggests a role in the BPD post-injury response. In the ENDOs, redox balance and mitochondrial function pathways were modulated. Alternative mRNA splicing and cell proliferative functions were elevated in both populations suggesting potential dysregulation of cell progenitor fate. This study characterized the proteome of epithelial and endothelial cells from the BPD lung for the first time, identifying population-specific changes in BPD pathogenesis.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sorted-Cell Proteomics Reveals an AT1-Associated Epithelial Cornification Phenotype and Suggests Endothelial Redox Imbalance in Human Bronchopulmonary Dysplasia.\",\"authors\":\"Mereena George Ushakumary, William B Chrisler, Gautam Bandyopadhyay, Heidie L Huyck, Brittney L Gorman, Naina Almazbekovna Beishembieva, Ariana Pitonzo, Zhenli J Lai, Thomas L Fillmore, Isaac Kwame Attah, Gail Deutsch, Jeffrey M Purkerson, Andrew M Dylag, Ravi S Misra, James P Carson, Joshua N Adkins, Gloria Pryhuber, Geremy C Clair\",\"doi\":\"10.1152/ajplung.00098.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bronchopulmonary dysplasia (BPD) is a neonatal lung disease characterized by inflammation and scarring leading to long-term tissue damage. Previous whole tissue proteomics identified BPD-specific proteome changes and cell type shifts. Little is known about the proteome-level changes within specific cell populations in disease. Here, we sorted epithelial (EPI) and endothelial (ENDO) cell populations based on their differential surface markers from normal and BPD human lungs. Using a low-input compatible sample preparation method (MicroPOT), proteins were extracted and digested into peptides and subjected to Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) proteome analysis. Of the 4,970 proteins detected, 293 were modulated in abundance or detection in the EPI population and 422 were modulated in ENDO cells. Modulation of proteins associated with actin-cytoskeletal function such as SCEL, LMO7, and TBA1B were observed in the BPD EPIs. Using confocal imaging and analysis, we validated the presence of aberrant multilayer-like structures comprising SCEL and LMO7, known to be associated with epidermal cornification, in the human BPD lung. This is the first report of accumulation of cornification-associated proteins in BPD. Their localization in the alveolar parenchyma, primarily associated with alveolar type 1 (AT1) cells, suggests a role in the BPD post-injury response. In the ENDOs, redox balance and mitochondrial function pathways were modulated. Alternative mRNA splicing and cell proliferative functions were elevated in both populations suggesting potential dysregulation of cell progenitor fate. This study characterized the proteome of epithelial and endothelial cells from the BPD lung for the first time, identifying population-specific changes in BPD pathogenesis.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00098.2025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00098.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Sorted-Cell Proteomics Reveals an AT1-Associated Epithelial Cornification Phenotype and Suggests Endothelial Redox Imbalance in Human Bronchopulmonary Dysplasia.
Bronchopulmonary dysplasia (BPD) is a neonatal lung disease characterized by inflammation and scarring leading to long-term tissue damage. Previous whole tissue proteomics identified BPD-specific proteome changes and cell type shifts. Little is known about the proteome-level changes within specific cell populations in disease. Here, we sorted epithelial (EPI) and endothelial (ENDO) cell populations based on their differential surface markers from normal and BPD human lungs. Using a low-input compatible sample preparation method (MicroPOT), proteins were extracted and digested into peptides and subjected to Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) proteome analysis. Of the 4,970 proteins detected, 293 were modulated in abundance or detection in the EPI population and 422 were modulated in ENDO cells. Modulation of proteins associated with actin-cytoskeletal function such as SCEL, LMO7, and TBA1B were observed in the BPD EPIs. Using confocal imaging and analysis, we validated the presence of aberrant multilayer-like structures comprising SCEL and LMO7, known to be associated with epidermal cornification, in the human BPD lung. This is the first report of accumulation of cornification-associated proteins in BPD. Their localization in the alveolar parenchyma, primarily associated with alveolar type 1 (AT1) cells, suggests a role in the BPD post-injury response. In the ENDOs, redox balance and mitochondrial function pathways were modulated. Alternative mRNA splicing and cell proliferative functions were elevated in both populations suggesting potential dysregulation of cell progenitor fate. This study characterized the proteome of epithelial and endothelial cells from the BPD lung for the first time, identifying population-specific changes in BPD pathogenesis.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.